M16 rifle
Rifle, Caliber 5.56 mm, M16 | |
---|---|
Type | Assault rifle |
Place of origin | United States |
Service history | |
In service | 1964–present[1] |
Used by | See Users |
Wars | See Conflicts |
Production history | |
Designer | Eugene Stoner (AR-10)[2] L. James Sullivan (AR-15)[3] |
Designed | 1959[4] |
Manufacturer | |
Produced |
|
No. built | ~8 million[1][10][11] |
Variants | See List of Colt AR-15 and M16 rifle variants |
Specifications (M16) | |
Mass | Unloaded: 6.37 lb (2.89 kg) (M16A1) 7.5 lb (3.40 kg) (M16A2 without magazine and sling)[12] 7.5 lb (3.40 kg) (M16A4) 8.81 lb (4.00 kg) (M16A4 loaded with 30 rounds and sling)[13] |
Length | 38.81 in (986 mm) (M16A1) 39.63 in (1,007 mm) (M16A2) 39.37 in (1,000 mm) (M16A4) |
Barrel length | 20 in (508 mm) |
Cartridge | 5.56×45mm NATO |
Action | Gas-operated, closed rotating bolt, Stoner expanding gas |
Rate of fire | 700–800 rounds/min cyclic sustained (M16A1)[14] 700–900 rounds/min cyclic sustained (M16A2, M16A3)[15] 800 rounds/min cyclic sustained (M16A4)[15] |
Muzzle velocity | 3,150 ft/s (960 m/s) (M855A1 round)[16] |
Effective firing range | 550 m (601 yd) (point target)[17] 800 m (875 yd) (area target)[18] |
Maximum firing range | 3,600 m (3,937 yd) |
Feed system | STANAG magazine 20-round detachable box magazine 30-round detachable box magazine 40-round detachable box magazine 60-round detachable box magazine Beta C-Mag 100-round drum magazine |
Sights | Iron sights: Rear: aperture; L-type flip Front: wing-protected post Various aiming optics |
The M16 rifle (officially designated Rifle, Caliber 5.56 mm, M16) is a family of assault rifles adapted from the ArmaLite AR-15 rifle for the United States military. The original M16 rifle was a 5.56×45mm automatic rifle with a 20-round magazine.
In 1964, the XM16E1 entered US military service as the M16 and in the following year was deployed for jungle warfare operations during the Vietnam War.[19] In 1969, the M16A1 replaced the M14 rifle to become the US military's standard service rifle.[20] The M16A1 incorporated numerous modifications including a bolt-assist, chrome-plated bore, protective reinforcement around the magazine release, and revised flash hider.[19]
In 1983, the US Marine Corps adopted the M16A2 rifle, and the US Army adopted it in 1986. The M16A2 fires the improved 5.56×45mm (M855/SS109) cartridge and has a newer adjustable rear sight, case deflector, heavy barrel, improved handguard, pistol grip, and buttstock, as well as a semi-auto and three-round burst fire selector.[21] Adopted in July 1997, the M16A4 is the fourth generation of the M16 series. It is equipped with a removable carrying handle and quad Picatinny rail for mounting optics and other ancillary devices.[22]
The M16 has also been widely adopted by other armed forces around the world. Total worldwide production of M16s is approximately 8 million, making it the most-produced firearm of its 5.56 mm caliber.[23][1] The US military has largely replaced the M16 in frontline combat units with a shorter and lighter version, the M4 carbine.[24][25] In April 2022, the U.S. Army selected the SIG MCX SPEAR as the winner of the Next Generation Squad Weapon Program to replace the M16/M4. The new rifle is designated XM7.[26]
History
[edit]Background
[edit]In 1928, a U.S. Army 'Caliber Board' conducted firing tests at Aberdeen Proving Ground and recommended transitioning to smaller caliber rounds, mentioning, in particular .27 in (6.86 mm) caliber. Largely in deference to tradition, this recommendation was ignored and the Army referred to the .30 in (7.62 mm) caliber as "full-sized" for the next 35 years.[27] After World War II, the United States military started looking for a single automatic rifle to replace the M1 Garand, M1/M2 carbines, M1918 Browning automatic rifle, M3 "Grease Gun" and Thompson submachine gun.[28] However, early experiments with select-fire versions of the M1 Garand proved disappointing.[29] During the Korean War, the select-fire M2 carbine largely replaced the submachine gun in US service[30] and became the most widely used carbine variant.[31] However, combat experience suggested that the .30 carbine round was underpowered.[32] American weapons designers concluded that an intermediate round was necessary, and recommended a small-caliber, high-velocity cartridge.[33]
However, senior American commanders, having faced fanatical enemies and experienced major logistical problems during World War II and the Korean War,[34][35] insisted that a single, powerful .30 caliber cartridge be developed, that could not only be used by the new automatic rifle but by the new general-purpose machine gun (GPMG) in concurrent development.[36] This culminated in the development of the 7.62×51 mm NATO cartridge.[37]
The U.S. Army then began testing several rifles to replace the obsolete M1. Springfield Armory's T44E4 and heavier T44E5 were essentially updated versions of the M1 chambered for the new 7.62 mm round, while Fabrique Nationale submitted their FN FAL as the T48. ArmaLite entered the competition late, hurriedly submitting several AR-10 prototype rifles in the fall of 1956 to the U.S. Army's Springfield Armory for testing.[38] The AR-10 featured an innovative straight-line barrel/stock design, forged aluminum alloy receivers, and with phenolic composite stocks.[39] It had rugged elevated sights, an oversized aluminum[note 1] flash suppressor and recoil compensator, and an adjustable gas system.[41] The final prototype featured an upper and lower receiver with the now-familiar hinge and takedown pins, and the charging handle was on top of the receiver placed inside of the carry handle.[38] For a 7.62 mm NATO rifle, the AR-10 was incredibly lightweight at only 6.85 lb (3.11 kg) empty.[42] Initial comments by Springfield Armory test staff were favorable, and some testers commented that the AR-10 was the best lightweight automatic rifle ever tested by the Armory.[43] In the end, the U.S. Army chose the T44, now named the M14 rifle,[37] which was an improved M1 Garand with a 20-round magazine and automatic fire capability.[44][note 2] The U.S. also adopted the M60 general-purpose machine gun (GPMG).[37] Its NATO partners adopted the FN FAL and HK G3 rifles, as well as the FN MAG and Rheinmetall MG3 GPMGs.
The first confrontations between the AK-47 and the M14 came in the early part of the Vietnam War. Battlefield reports indicated that the M14 was uncontrollable in full-auto and that soldiers could not carry enough ammunition to maintain fire superiority over the AK-47.[46] And, while the M2 carbine offered a high rate of fire, it was under-powered and ultimately outclassed by the AK-47.[47] A replacement was needed: a medium between the traditional preference for high-powered rifles such as the M14, and the lightweight firepower of the M2 carbine.[48]
As a result, the Army was forced to reconsider a 1957 request by General Willard G. Wyman, commander of the U.S. Continental Army Command (CONARC) to develop a .223-inch caliber (5.56 mm) select-fire rifle weighing 6 lb (2.7 kg) when loaded with a 20-round magazine.[49] The 5.56 mm round had to penetrate a standard U.S. helmet at 500 yards (460 meters) and retain a velocity over the speed of sound while matching or exceeding the wounding ability of the .30 carbine cartridge.[50]
This request ultimately resulted in the development of a scaled-down version of the Armalite AR-10, named the ArmaLite AR-15.[51] The AR-15 was first revealed by Eugene Stoner at Fort Benning in May 1957.[52] The AR-15 used .22-caliber bullets, which destabilized when they hit a human body, as opposed to the .30 round, which typically passed through in a straight line. The smaller caliber meant that it could be controlled in autofire due to the reduced bolt thrust and free recoil impulse. Being almost one-third the weight of the .30 meant that the soldier could sustain fire for longer with the same load. Due to design innovations, the AR-15 could fire 600 to 700 rounds a minute with an extremely low jamming rate. Parts were stamped out, not hand-machined, so they could be mass-produced, and the stock was plastic to reduce weight.[27]
In 1958, the Army's Combat Developments Experimentation Command ran experiments with small squads in combat situations using the M14, AR-15, and Winchester's Light Weight Military Rifle (WLWMR).[53] The resulting study recommended adopting a lightweight rifle like the AR-15. In response, the Army declared that all rifles and machine guns should use the same ammunition and ordered full production of the M14.[27] However, advocates for the AR-15 gained the attention of Air Force Chief of Staff General Curtis LeMay. After testing the AR-15 with the ammunition manufactured by Remington that Armalite and Colt recommended, the Air Force declared that the AR-15 was its 'standard model' and ordered 8,500 rifles and 8.5 million rounds.[27] Advocates for the AR-15 in the Defense Advanced Research Projects Agency acquired 1,000 Air Force AR-15s and shipped them to be tested by the Army of the Republic of Vietnam (ARVN). The South Vietnam soldiers issued glowing reports of the weapon's reliability, recording zero broken parts while firing 80,000 rounds in one stage of testing, and requiring only two replacement parts for the 1,000 weapons over the entire course of testing. The report of the experiment recommended that the U.S. provide the AR-15 as the standard rifle of the ARVN, but Admiral Harry Felt, then Commander in Chief of Pacific Forces, rejected the recommendations on the advice of the U.S. Army.[27]
Throughout 1962 and 1963, the U.S. military extensively tested the AR-15. Positive evaluations emphasized its lightness, "lethality", and reliability.[27] However, the Army Materiel Command criticized its inaccuracy at longer ranges and lack of penetrating power at higher ranges.[54] In early 1963, the U.S. Special Forces asked and was given permission, to make the AR-15 its standard weapon. Other users included Army Airborne units in Vietnam and some units affiliated with the Central Intelligence Agency. As more units adopted the AR-15, Secretary of the Army Cyrus Vance ordered an investigation into why the weapon had been rejected by the Army. The resulting report found that Army Materiel Command had rigged the previous tests, selecting tests that would favor the M14 and choosing match grade M14s to compete against AR-15s out of the box.[27] At this point, the bureaucratic battle lines were well-defined, with the Army ordnance agencies opposed to the AR-15 and the Air Force and civilian leadership of the Defense Department in favor.[27]
In January 1963, Secretary of Defense Robert McNamara concluded that the AR-15 was the superior weapon system and ordered a halt to M14 production.[55] In late 1963, the Defense Department began mass procurement of rifles for the Air Force and special Army units. Secretary McNamara designated the Army as the procurer for the weapon with the Department, which allowed the Army ordnance establishment to modify the weapon as they wished. The first modification was the addition of a "manual bolt closure," allowing a soldier to ram in a round if it failed to seat properly. The Air Force, which was buying the rifle, and the Marine Corps, which had tested it both objected to this addition, with the Air Force noting, "During three years of testing and operation of the AR-15 rifle under all types of conditions the Air Force has no record of malfunctions that could have been corrected by a manual bolt closing device." They also noted that the closure added weight and complexity, reducing the reliability of the weapon. Colonel Harold Yount, who managed the Army procurement, would later state the bolt closure was added after direction from senior leadership, rather than as a result of any complaint or test result, and testified about the reasons: "the M-1, the M-14, and the carbine had always had something for the soldier to push on; that maybe this would be a comforting feeling to him or something."[56]
After modifications, the new redesigned rifle was subsequently adopted as the M16 Rifle:[57]
(The M16) was much lighter compared to the M14 it replaced, ultimately allowing soldiers to carry more ammunition. The air-cooled, gas-operated, magazine-fed assault rifle was made of steel, aluminum alloy, and composite plastics, truly cutting-edge for the time. Designed with full and semi-automatic capabilities, the weapon initially did not respond well to wet and dirty conditions, sometimes even jamming in combat. After a few minor modifications, the weapon gained in popularity among troops on the battlefield.[58][note 3]
Despite its early failures the M16 proved to be a revolutionary design and stands as the longest continuously serving rifle in US military history.[60] It has been adopted by many US allies and the 5.56×45 mm NATO cartridge has become not only the NATO standard but "the standard assault-rifle cartridge in much of the world."[61] It also led to the development of small-caliber high-velocity service rifles by every major army in the world.[62] It is a benchmark against which other assault rifles are judged.[62][note 4]
Adoption
[edit]In July 1960, General Curtis LeMay was impressed by a demonstration of the ArmaLite AR-15. In the summer of 1961, General LeMay was promoted to U.S. Air Force chief of staff and requested 80,000 AR-15s. However, General Maxwell D. Taylor, chairman of the Joint Chiefs of Staff, advised President John F. Kennedy that having two different calibers within the military system at the same time would be problematic and the request was rejected.[65] In October 1961, William Godel, a senior man at the Advanced Research Projects Agency, sent 10 AR-15s to South Vietnam. The reception was enthusiastic, and in 1962 another 1,000 AR-15s were sent.[66] United States Army Special Forces personnel filed battlefield reports lavishly praising the AR-15 and the stopping power of the 5.56 mm cartridge, and pressed for its adoption.[44]
The damage caused by the 5.56 mm bullet was originally believed to be caused by "tumbling" due to the slow 1 turn in 14-inch (360 mm) rifling twist rate.[67] However, any pointed lead core bullet will "tumble" after penetration into flesh, because the center of gravity is towards the rear of the bullet. The large wounds observed by soldiers in Vietnam were caused by bullet fragmentation created by a combination of the bullet's velocity and construction.[68] These wounds were so devastating that the photographs remained classified into the 1980s.[69]
However, despite overwhelming evidence that the AR-15 could bring more firepower to bear than the M14, the Army opposed the adoption of the new rifle.[55] U.S. Secretary of Defense Robert McNamara now had two conflicting views: the ARPA report[70] favoring the AR-15 and the Army's position favoring the M14.[44] Even President Kennedy expressed concern, so McNamara ordered Secretary of the Army, Cyrus Vance, to test the M14, the AR-15, and the AK-47. The Army reported that only the M14 was suitable for service, but Vance wondered about the impartiality of those conducting the tests. He ordered the Army Inspector General to investigate the testing methods used; the inspector general confirmed that the testers were biased toward the M14.
In January 1963, Secretary McNamara received reports that M14 production was insufficient to meet the needs of the armed forces and ordered a halt to M14 production.[44] At the time, the AR-15 was the only rifle that could fulfill a requirement of a "universal" infantry weapon for issue to all services. McNamara ordered its adoption, despite receiving reports of several deficiencies, most notably the lack of a chrome-plated chamber.[71]
After modifications (most notably, the charging handle was re-located from under the carrying handle like the AR-10, to the rear of the receiver),[72] the newly redesigned rifle was renamed the Rifle, Caliber 5.56 mm, M16.[19][62] Inexplicably, the modification to the new M16 did not include a chrome-plated barrel. Meanwhile, the Army relented and recommended the adoption of the M16 for jungle warfare operations. However, the Army insisted on the inclusion of a forward assist to help push the bolt into battery if a cartridge failed to seat into the chamber. The Air Force, Colt, and Eugene Stoner believed that the addition of a forward assist was an unjustified expense. As a result, the design was split into two variants: the Air Force's M16 without the forward assist, and the XM16E1 with the forward assist for the other service branches.
In November 1963, McNamara approved the U.S. Army's order of 85,000 XM16E1s;[73] and to appease General LeMay, the Air Force was granted an order for another 19,000 M16s.[74] In March 1964, the M16 rifle went into production and the Army accepted delivery of the first batch of 2,129 rifles later that year, and an additional 57,240 rifles the following year.[19]
In 1964, the Army was informed that DuPont could not mass-produce the IMR 4475 stick powder to the specifications demanded by the M16. Therefore, Olin Mathieson Company provided a high-performance ball propellant. While the Olin WC 846 powder achieved the desired 3,300 ft (1,000 m) per second muzzle velocity, it produced much more fouling, which quickly jammed the M16's action (unless the rifle was cleaned well and often).[27]
In March 1965, the Army began to issue the XM16E1 to infantry units. However, the rifle was initially delivered without adequate cleaning kits[44] or instructions because advertising from Colt asserted that the M16's materials made the weapon require little maintenance, leading to a misconception that it was capable of self-cleaning.[75] Furthermore, cleaning was often conducted with improper equipment, such as insect repellent, water, and aircraft fuel, which induced further wear on the weapon.[76] As a result, reports of stoppages in combat began to surface.[44] The most severe problem was known as "failure to extract"—the spent cartridge case remained lodged in the chamber after the rifle was fired.[44][77] Documented accounts of dead U.S. troops found next to disassembled rifles eventually led to a Congressional investigation:[78]
We left with 72 men in our platoon and came back with 19. ...Believe it or not, you know what killed most of us? Our own rifle. Practically every one of our dead was found with his (M16) torn down next to him where he had been trying to fix it.
— Marine Corps Rifleman, Vietnam.[79]
In February 1967, the improved XM16E1 was standardized as the M16A1.[80] The new rifle had a chrome-plated chamber and bore to eliminate corrosion and stuck cartridges, and other minor modifications.[44] New cleaning kits, powder solvents, and lubricants were also issued. Intensive training programs in weapons cleaning were instituted including a comic book-style operations manual.[81] As a result, reliability problems were largely resolved and the M16A1 rifle achieved widespread acceptance by U.S. troops in Vietnam.[82]
In 1969, the M16A1 officially replaced the M14 rifle to become the U.S. military's standard service rifle.[83][84] In 1970, the new WC 844 powder was introduced to reduce fouling.[85]
Colt, H&R, and GM Hydramatic Division manufactured M16A1 rifles during the Vietnam War.[citation needed] M16s were produced by Colt until the late 1980s when FN Herstal (FN USA) began to manufacture them.[86]
Reliability
[edit]During the early part of its service, the M16 had a reputation for poor reliability and a malfunction rate of two per 1000 rounds fired.[87] The M16's action works by passing high-pressure propellant gasses, tapped from the barrel, down a tube and into the carrier group within the upper receiver. The gas goes from the gas tube, through the bolt carrier key, and into the inside of the carrier where it expands in a donut-shaped gas-piston cylinder. Because the bolt is prevented from moving forward by the barrel, the carrier is driven to the rear by the expanding gases and thus converts the energy of the gas to the movement of the rifle's parts. The back part of the bolt forms a piston head and the cavity in the bolt carrier is the piston sleeve. While the M16 is commonly said to use a direct impingement system, this is wrong, and it is instead correct to say it uses an internal piston system.[88] This system is however ammunition specific, since it does not have an adjustable gas port or valve to adjust the weapon to various propellant and projectile or barrel length specific pressure behavior.
The M16 operating system designed by Stoner is lighter and more compact than a gas-piston design. However, this design requires that combustion byproducts from the discharged cartridge be blown into the receiver as well. This accumulating carbon and vaporized metal build-up within the receiver and bolt carrier negatively affects reliability and necessitates more intensive maintenance on the part of the individual soldier. The channeling of gasses into the bolt carrier during operation increases the amount of heat that is deposited in the receiver while firing the M16 and causes the essential lubricant to be "burned off". This requires frequent and generous applications of appropriate lubricant.[89] Lack of proper lubrication is the most common source of weapon stoppages or jams.[90]
The original M16 fared poorly in the jungles of Vietnam and was infamous for reliability problems in harsh environments. Max Hastings was very critical of the M16's general field issue in Vietnam just as grievous design flaws were becoming apparent. He further states that the Shooting Times experienced repeated malfunctions with a test M16 and assumed these would be corrected before military use, but they were not. Many marines and soldiers were so angry with the reliability problems they began writing home and on 26 March 1967, the Washington Daily News broke the story.[91] Eventually, the M16 became the target of a congressional investigation.[note 5]
The investigation found that:[19]
- The M16 was issued to troops without cleaning kits or instructions on how to clean the rifle.
- The M16 and 5.56×45mm cartridge was tested and approved with the use of a DuPont IMR8208M extruded powder, which was switched to Olin Mathieson WC846 ball powder which produced much more fouling, which quickly jammed the action of the M16 (unless the gun was cleaned well and often).
- The M16 lacked a forward assist (rendering the rifle inoperable when it failed to go fully forward).
- The M16 lacked a chrome-plated chamber, which allowed corrosion problems and contributed to case-extraction failures (which was considered the most severe problem and required extreme measures to clear, such as inserting the cleaning rod down the barrel and knocking the spent cartridge out).
When these issues were addressed and corrected by the M16A1, the reliability problems decreased greatly.[80] According to a 1968 Department of Army report, the M16A1 rifle achieved widespread acceptance by U.S. troops in Vietnam.[93] "Most men armed with the M16 in Vietnam rated this rifle's performance high, however, many men entertained some misgivings about the M16's reliability. When asked what weapon they preferred to carry in combat, 85 percent indicated that they wanted either the M16 or its [smaller] carbine-length version, the XM177E2." Also, "the M14 was preferred by 15 percent, while less than one percent wished to carry either the Stoner rifle, the AK-47, the [M1] carbine or a pistol."[59] In March 1970, the "President's Blue Ribbon Defense Panel" concluded that the issuance of the M16 saved the lives of 20,000 U.S. servicemen during the Vietnam War, who would have otherwise died had the M14 remained in service.[94] However, the M16 rifle's reputation has suffered as of 2011.[95]
Another underlying cause of the M16's jamming problem was identified by ordnance staff that discovered that Stoner and ammunition manufacturers had initially tested the AR-15 using DuPont IMR8208M extruded (stick) powder. Later ammunition manufacturers adopted the more readily available Olin Mathieson WC846 ball powder. The ball powder produced a longer peak chamber pressure with undesired timing effects. Upon firing, the cartridge case expands and seals the chamber (obturation). When the peak pressure starts to drop the cartridge case contracts and then can be extracted. With ball powder, the cartridge case was not contracted enough during extraction due to the longer peak pressure period. The ejector would then fail to extract the cartridge case, tearing through the case rim, and leaving an obturated case behind.[96]
After the introduction of the M4 carbine, it was found that the shorter barrel length of 14.5 inches also harms the reliability, as the gas port is located closer to the chamber than the gas port of the standard length M16 rifle: 7.5 inches instead of 13 inches.[97] This affects the M4's timing and increases the amount of stress and heat on the critical components, thereby reducing reliability.[97] In a 2002 assessment, the USMC found that the M4 malfunctioned three times more often than the M16A4 (the M4 failed 186 times for 69,000 rounds fired, while the M16A4 failed 61 times).[98] Thereafter, the Army and Colt worked to make modifications to the M4s and M16A4s to address the problems found.[98] In tests conducted in 2005 and 2006 the Army found that on average, the new M4s and M16s fired approximately 5,000 rounds between stoppages.[98][99]
In December 2006, the Center for Naval Analyses (CNA) released a report on U.S. small arms in combat. The CNA conducted surveys on 2,608 troops returning from combat in Iraq and Afghanistan over the past 12 months. Only troops who had fired their weapons at enemy targets were allowed to participate. 1,188 troops were armed with M16A2 or A4 rifles, making up 46 percent of the survey. 75 percent of M16 users (891 troops) reported they were satisfied with the weapon. 60 percent (713 troops) were satisfied with handling qualities such as handguards, size, and weight. Of the 40 percent dissatisfied, most were with its size. Only 19 percent of M16 users (226 troops) reported a stoppage, while 80 percent of those that experienced a stoppage said it had little impact on their ability to clear the stoppage and re-engage their target. Half of the M16 users experienced failures in their magazines to feed. 83 percent (986 troops) did not need their rifles repaired while in the theater. 71 percent (843 troops) were confident in the M16's reliability, defined as a level of soldier confidence their weapon will fire without malfunction, and 72 percent (855 troops) were confident in its durability, defined as a level of soldier confidence their weapon will not break or need repair. Both factors were attributed to high levels of soldiers performing their maintenance. 60 percent of M16 users offered recommendations for improvements. Requests included greater bullet lethality, newly built instead of rebuilt rifles, better-quality magazines, decreased weight, and a collapsible stock. Some users recommended shorter and lighter weapons such as the M4 carbine.[100] Some issues have been addressed with the issuing of the Improved STANAG magazine in March 2009,[101][102] and the M855A1 Enhanced Performance Round in June 2010.[103]
In early 2010, two journalists from The New York Times spent three months with soldiers and Marines in Afghanistan. While there, they questioned around 100 infantry troops about the reliability of their M16 rifles, as well as the M4 carbine. The troops did not report reliability problems with their rifles. While only 100 troops were asked, they engaged in daily fighting in Marja, including at least a dozen intense engagements in Helmand Province, where the ground is covered in fine powdered sand (called "moon dust" by troops) that can stick to firearms.[104] Weapons were often dusty, wet, and covered in mud. Intense firefights lasted hours with several magazines being expended. Only one soldier reported a jam when his M16 was covered in mud after climbing out of a canal. The weapon was cleared and resumed firing with the next chambered round. Furthermore, the Marine Chief Warrant Officer responsible for weapons training and performance of the Third Battalion, Sixth Marines, reported that "We've had nil in the way of problems; we've had no issues", with his battalion's 350 M16s and 700 M4s.[104]
Design
[edit]The M16 is a lightweight, 5.56 mm, air-cooled, gas-operated, magazine-fed assault rifle, with a rotating bolt. The M16's receivers are made of 7075 aluminum alloy, its barrel, bolt, and bolt carrier of steel, and its handguards, pistol grip, and buttstock of plastics.
The M16 internal piston action was derived from the original ArmaLite AR-10 and ArmaLite AR-15 actions. This internal piston action system designed by Eugene Stoner is commonly called a direct impingement system, but it does not use a conventional direct impingement system. In U.S. patent 2,951,424, the designer states: ″This invention is a true expanding gas system instead of the conventional impinging gas system.″[105] The gas system, bolt carrier, and bolt-locking design is ammunition specific, since it does not have an adjustable gas port or valve to adjust the weapon to various propellant and projectile or barrel length specific pressure behavior.
The M16A1 was especially lightweight at 7.9 pounds (3.6 kg) with a loaded 30-round magazine.[106] This was significantly less than the M14 that it replaced at 10.7 pounds (4.9 kg) with a loaded 20-round magazine.[107] It is also lighter when compared to the AKM's 8.3 pounds (3.8 kg) with a loaded 30-round magazine.[108]
The M16A2 weighs 8.8 lb (4.0 kg) loaded with a 30-round magazine, because of the adoption of a thicker barrel profile. The thicker barrel is more resistant to damage when handled roughly and is also slower to overheat during sustained fire. Unlike a traditional "bull" barrel that is thick its entire length, the M16A2's barrel is only thick forward of the handguards. The barrel profile under the handguards remained the same as the M16A1 for compatibility with the M203 grenade launcher.
Barrel
[edit]Early model M16 barrels had a rifling twist of four grooves, right-hand twist, one turn in 14 inches (1:355.6 mm or 64 calibers) bore—as it was the same rifling as used by the .222 Remington sporting cartridge. After finding out that under unfavorable conditions, military bullets could yaw in flight at long ranges, the rifling was soon altered. Later M16 models and the M16A1 had an improved rifling with six grooves, right-hand twist, one turn in 12 inches (1:304.8 mm or 54.8 calibers) for increased accuracy and was optimized to adequately stabilize the M193 ball and M196 tracer bullets. M16A2 and current models are optimized for firing the heavier NATO SS109 ball and long L110 tracer bullets and have six grooves, right-hand twist, one turn in 7 in (1:177.8 mm or 32 calibers).[23][109]
M193 ball and M196 tracer bullets may be fired in a rifle with a one turn in 7 in (1:177.8 mm or 32 calibers) twist barrel. NATO SS109 ball and L110 tracer bullets should only be used in emergency situations at ranges under 90 m (98 yd) with a one turn in 12 inches (1:304.8 mm or 54.8 calibers) twist, as this twist is insufficient to stabilize these projectiles.[110] Weapons designed to adequately stabilize both the M193 or SS109 projectiles (like civilian market clones) usually have a six-groove, right-hand twist, one turn in 9 inches (1:228.6 mm or 41.1 calibers) or one turn in 8 inches (1:203.2 mm or 36.5 calibers) bore, although other and 1:7 inches twist rates are available as well.
Recoil
[edit]The (M16's) Stoner system provides a very symmetric design that allows straight-line movement of the operating components. This allows recoil forces to drive straight to the rear. Instead of connecting or other mechanical parts driving the system, high-pressure gas performs this function, reducing the weight of moving parts and the rifle as a whole.[88]
The M16 uses a "straight-line" recoil design, where the recoil spring is located in the stock directly behind the action,[83] and serves the dual function of operating spring and recoil buffer.[83] The stock being in line with the bore also reduces muzzle rise, especially during automatic fire. Because recoil does not significantly shift the point of aim, faster follow-up shots are possible and user fatigue is reduced. In addition, current model M16 flash-suppressors also act as compensators to reduce recoil further.[106]
Free recoil[111] | |
---|---|
M16 | |
Momentum | 40.4 lb-ft/s |
Velocity | 5.1 ft/s (1.6 m/s) |
Energy | 3.2 ft⋅lb (4.3 J) |
Notes: Free recoil is calculated by using the rifle weight, bullet weight, muzzle velocity, and charge weight.[111] It is that which would be measured if the rifle were fired suspended from strings, free to recoil.[111] A rifle's perceived recoil is also dependent on many other factors which are not readily quantified.[111]
Sights
[edit]The M16's most distinctive ergonomic feature is the carrying handle and rear sight assembly on top of the receiver. This is a by-product of the original AR-10 design, where the carrying handle contained a rear sight that could be set for specific range settings and also served to protect the charging handle.[83] The M16 carry handle also provided mounting groove interfaces and a hole at the bottom of the handle groove for mounting a Colt 3×20 telescopic sight featuring a Bullet Drop Compensation elevation adjustment knob for ranges from 100 to 500 yd (91 to 457 m). This concurs with the pre-M16A2 maximum effective range of 460 m (503 yd).[112] The Colt 3×20 telescopic sight was factory adjusted to be parallax-free at 200 yd (183 m).[113][114] In Delft, the Netherlands Artillerie-Inrichtingen produced a roughly similar 3×25 telescopic sight for the carrying handle mounting interfaces.[115]
The M16 elevated iron sight line has a 19.75 in (502 mm) sight radius.[23] As the M16 series rear sight, front sight and sighting in targets designs were modified over time and non-iron sight (optical) aiming devices and new service ammunition were introduced zeroing procedures changed.[116]
The standard pre-M16A2 "Daylight Sight System" uses an AR-15-style L-type flip, two aperture rear sight featuring two combat settings: short-range 0 to 300 m (0 to 328 yd) and long-range 300 to 400 m (328 to 437 yd), marked 'L'.[117] The pre-M16A2 "Daylight Sight System" short-range and long-range zeros are 250 and 375 m (273 and 410 yd) with M193 ammunition.[117] The rear sight features a windage drum that can be adjusted during zeroing with about 1 MOA increments. The front sight is a tapered round post of approximately 0.0625 in (1.59 mm) diameter adjustable during zeroing in about 1 MOA increments. A cartridge or tool is required to (re)zero the sight line.[118][116]
An alternative pre-M16A2 "Low Light Level Sight System", includes a front sight post with a weak light source provided by tritium radioluminescence in an embedded small glass vial and a two aperture rear sight consisting of a 2 mm (0.079 in) diameter aperture marked 'L' intended for normal use out to 460 m (503 yd) and a 7 mm (0.276 in) diameter large aperture for night firing.[117] Regulation stipulates the radioluminescent front sight post must be replaced if more than 144 months (12 years) elapsed after manufacture.[119] The "Low Light Level Sight System" elevation and windage adjustment increments are somewhat coarser compared to the "Daylight Sight System".[117]
With the advent of the M16A2, a less simple fully adjustable rear sight was added, allowing the rear sight to be dialed in with an elevation wheel for specific range settings between 300 and 800 m (328 and 875 yd) in 100 m increments and to allow windage adjustments with a windage knob without the need of a cartridge or tool. The unmarked approximately 0.070 in (1.78 mm) diameter aperture rear sight is for normal firing situations, zeroing and with the elevation knob for target distances up to 800 meters. The downsides of relatively small rear sight apertures are less light transmission through the aperture and a reduced field of view. A new larger approximately 0.2 in (5.08 mm) diameter aperture, marked '0-2' and featuring a windage setting index mark, offers a larger field of view during battle conditions and is used as a ghost ring for quick target engagement and during limited visibility. When flipped down, the engraved windage mark on top of the '0-2' aperture ring shows the dialed in windage setting on a windage scale at the rear of the rear sight assembly. When the normal use rear aperture sight is zeroed at 300 m with SS109/M855 ammunition, first used in the M16A2, the '0-2' rear sight will be zeroed for 200 m. The front sight post was widened to approximately 0.075 in (1.91 mm) diameter and became square and became adjustable during zeroing in about 1.2 MOA increments.[120][121]
The M16A4 omitted the carrying handle and rear sight assembly on top of the receiver. Instead, it features a MIL-STD-1913 Picatinny railed flat-top upper receiver for mounting various optical sighting devices or a new detachable carrying handle and M16A2-style rear sight assembly. The current U.S. Army and Air Force issue M4A1 carbine comes with the M68 close combat optic and back-up iron sight.[122] The U.S. Marine Corps uses the ACOG Rifle Combat Optic[123][124] and the U.S. Navy uses the EOTech holographic weapon sight.[125]
Range and accuracy
[edit]The M16 rifle is considered to be very accurate for a service rifle.[126] Its light recoil, high-velocity and flat trajectory allow shooters to take headshots out to 300 meters.[127] Newer M16s use the newer M855 cartridge increasing their effective range to 600 meters.[23] They are more accurate than their predecessors and are capable of shooting 1–3-inch groups at 100 yards.[128][note 6] "In Fallujah, Iraq Marines with ACOG-equipped M16A4s created a stir by taking so many headshots that until the wounds were closely examined, some observers thought the insurgents had been executed."[130] The newest M855A1 EPR cartridge is even more accurate and during testing "...has shown that, on average, 95 percent of the rounds will hit within an 8 × 8-inch (20.3 × 20.3 cm) target at 600 meters."[131]
Rifle | Caliber | Cartridge | Cartridge weight |
Bullet weight |
Velocity | Energy | Range | Accuracy | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Effective[note 7] | Horizontal[note 8] | Lethal[note 9] | Maximum[note 10][134] | 10 shot group @ 100 meters |
10 shot group @ 300 meters | |||||||
M16 | 5.56×45 mm | M193 | 184 gr (11.9 g)[134] |
55 gr (3.6 g)[136] |
3,250 fps (990 m/s)[136] |
1,302 ft/lb (1,764 J)[136] |
500 yds (460 m)[137] |
711 yds (650 m)[134] |
984 yds (900 m)[134] |
3000 yds (2700 m)[134] |
4.3 in (11 cm)[134] |
12.6 in (32 cm)[note 11] |
Single-shot hit-probability on crouching man (NATO E-type silhouette) target[139] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rifle | Chambering | Hit-probability (with no range estimation or aiming errors) | ||||||||
50 meters | 100 meters | 200 meters | 300 meters | 400 meters | 500 meters | 600 meters | 700 meters | 800 meters | ||
M16A1 (1967) | 5.56×45 mm NATO M193 | 100% | 100% | 100% | 100% | 96% | 87% | 73% | 56% | 39% |
M16A2 (1982) | 5.56×45 mm NATO SS109/M855 | 100% | 100% | 100% | 100% | 98% | 90% | 79% | 63% | 43% |
Terminal ballistics
[edit]The 5.56×45mm cartridge had several advantages over the 7.62×51mm NATO round used in the M14 rifle. It enabled each soldier to carry more ammunition and was easier to control during automatic or burst fire.[140] The 5.56×45mm NATO cartridge can also produce massive wounding effects when the bullet impacts at high speed and yaws ("tumbles") in tissue leading to fragmentation and rapid transfer of energy.[141]
Rifle | Caliber | Cartridge | Penetration | ||||||
---|---|---|---|---|---|---|---|---|---|
Ballistic gelatin @ 10 meters |
Sandbags @ 100 meters |
3/4" pine boards @ 100 meters |
Concrete building block (one center rib) |
Steel helmet | 1.9mm steel (14 gauge) @ 100 meters |
4mm steel (8 gauge) + layers of Kevlar-29 | |||
M16 | 5.56×45 mm | M193 | ≈14 in (36 cm) (bullet fragments into smaller pieces)[142] |
4 in (10 cm) (complete bullet disintegration)[143] |
8 boards (bullet tumbled)[143] |
one side to 200 m[143] | both sides to 300 m one side to 500 m[143] |
2 layers[143] | 31 layers of Kevlar[144] |
The original ammunition for the M16 was the 55-grain M193 cartridge. When fired from a 20 in (510 mm) barrel at ranges of up to 300 feet (100 m), the thin-jacketed lead-cored round traveled fast enough (above 2,900 ft/s (880 m/s)) that the force of striking a human body would cause the round to yaw (or tumble) and fragment into about a dozen pieces of various sizes thus created wounds that were out of proportion to its caliber.[142] These wounds were so devastating that many considered the M16 to be an inhumane weapon.[145] [note 12]As the 5.56 mm round's velocity decreases, so does the number of fragments that it produces.[147] The 5.56 mm round does not normally fragment at distances beyond 200 meters or at velocities below 2500 ft/s, and its lethality becomes largely dependent on shot placement.[148]
With the development of the M16A2, the new 62-grain M855 cartridge was adopted in 1983. The heavier bullet had more energy and was made with a steel core to penetrate Soviet body armor. However, this caused less fragmentation on impact and reduced effects against targets without armor, both of which lessened kinetic energy transfer and wounding ability.[77] Some soldiers and Marines coped with this through training, with requirements to shoot vital areas three times to guarantee killing the target.[149]
However, there have been repeated and consistent reports of the M855's inability to wound effectively (i.e., fragment) when fired from the short barreled M4 carbine (even at close ranges).[150] The M4's 14.5-in. barrel length reduces muzzle velocity to about 2900 ft/s.[151] This reduced wounding ability is one reason that, despite the Army's transition to short-barrel M4s, the Marine Corps has decided to continue using the M16A4 with its 20-inch barrel as the 5.56×45mm M855 is largely dependent upon high velocity in order to wound effectively.[150]
In 2003, the U.S. Army contended that the lack of lethality of the 5.56×45mm was more a matter of perception than fact.[152] With good shot placement to the head and chest, the target was usually defeated without issue.[153] The majority of failures were the result of hitting the target in non-vital areas such as extremities.[154] However, a minority of failures occurred in spite of multiple hits to the chest.[155] In 2006, a study found that 20% of soldiers using the M4 carbine wanted more lethality or stopping power.[156] In June 2010, the U.S. Army announced it began shipping its new 5.56 mm, lead-free, M855A1 Enhanced Performance Round to active combat zones.[157] This upgrade is designed to maximize performance of the 5.56×45mm round, to extend range, improve accuracy, increase penetration and to consistently fragment in soft-tissue when fired from not only standard length M16s, but also the short-barreled M4 carbines.[157][158] The U.S. Army has been impressed with the new M855A1 EPR round.[159] A 7.62 NATO M80A1 EPR variant was also developed.[160][161]
Magazines
[edit]The M16's magazine was meant to be a lightweight, disposable item.[162] As such, it is made of pressed/stamped aluminum and was not designed to be durable.[163] The M16 originally used a 20-round magazine which was later replaced by a bent 30-round design. As a result, the magazine follower tends to rock or tilt, causing malfunctions.[162] Many non-U.S. and commercial magazines have been developed to effectively mitigate these shortcomings, e.g., H&K's all-stainless-steel magazine, Magpul's polymer P-MAG, etc.[163][162]
Production of the 30-round magazine started late 1967 but did not fully replace the 20-round magazine until the mid-1970s.[162] Standard USGI aluminum 30-round M16 magazines weigh 0.24 lb (0.11 kg) empty and are 7.1 inches (18 cm) long.[151][note 13] The newer plastic magazines are about a half-inch longer.[164] The newer steel magazines are about 0.5-inch longer and four ounces heavier.[165] The M16's magazine has become the unofficial NATO STANAG magazine and is currently used by many Western nations, in numerous weapon systems.[166]
In 2009, the U.S. military began fielding an "improved magazine" identified by a tan-colored follower.[167] "The new follower incorporates an extended rear leg and modified bullet protrusion for improved round stacking and orientation. The self-leveling/anti-tilt follower minimizes jamming while a wider spring coil profile creates even force distribution. The performance gains have not added weight or cost to the magazines."[168]
In July 2016, the U.S. Army introduced another improvement, the new Enhanced Performance Magazine, which it says will result in a 300% increase in reliability in the M4 carbine. Developed by the United States Army Armament Research, Development and Engineering Center and the Army Research Laboratory in 2013, it is tan colored with blue follower to distinguish it from earlier, incompatible magazines.[169]
Muzzle devices
[edit]Most M16 rifles have a barrel threaded in 1⁄2-28" threads to incorporate the use of a muzzle device such as a flash suppressor or sound suppressor.[170] The initial flash suppressor design had three tines or prongs and was designed to preserve the shooter's night vision by disrupting the flash. Unfortunately it was prone to breakage and getting entangled in vegetation. The design was later changed to close the end to avoid this and became known as the "A1" or "bird cage" flash suppressor on the M16A1. Eventually on the M16A2 version of the rifle, the bottom port was closed to reduce muzzle climb and prevent dust from rising when the rifle was fired in the prone position.[171] For these reasons, the U.S. military declared the A2 flash suppressor as a compensator or a muzzle brake; but it is more commonly known as the "GI" or "A2" flash suppressor.[140]
The M16's Vortex Flash Hider weighs 3 ounces, is 2.25 inches long, and does not require a lock washer to attach to the barrel.[172] It was developed in 1984 and is one of the earliest privately designed muzzle devices. The U.S. military uses the Vortex Flash Hider on M4 carbines and M16 rifles.[note 14] A version of the Vortex has been adopted by the Canadian Military for the Colt Canada C8 CQB rifle.[174] Other flash suppressors developed for the M16 include the Phantom Flash Suppressor by Yankee Hill Machine (YHM) and the KX-3 by Noveske Rifleworks.[175]
The threaded barrel allows sound suppressors with the same thread pattern to be installed directly to the barrel; however this can result in complications such as being unable to remove the suppressor from the barrel due to repeated firing on full auto or three-round burst.[176] A number of suppressor manufacturers have designed "direct-connect" sound suppressors which can be installed over an existing M16's flash suppressor as opposed to using the barrel's threads.[176]
Grenade launchers and shotguns
[edit]All current M16-type rifles can mount under-barrel 40 mm grenade launchers, such as the M203 and M320. Both use the same 40×46mm LV grenades as the older, stand-alone M79 grenade launcher. The M16 can also mount under-barrel 12 gauge shotguns such as KAC Masterkey or the M26 Modular Accessory Shotgun System.
M234 launcher
[edit]The M234 riot control launcher is an M16-series rifle attachment firing an M755 blank round. The M234 mounts on the muzzle, bayonet lug, and front sight post of the M16. It fires either the M734 64 mm kinetic riot control or the M742 64 mm CSI riot control ring airfoil projectiles. The latter produces a 4 to 5-foot tear gas cloud on impact. The main advantage to using ring airfoil projectiles is that their design does not allow them to be thrown back by rioters with any real effect. The M234 is no longer used by U.S. forces. It has been replaced by the M203 grenade launcher and nonlethal ammunition.
Bayonet
[edit]The M16 is 44.25 inches (1,124 mm) long with an M7 bayonet attached.[106] The M7 bayonet is based on earlier designs such as the M4, M5, & M6 bayonets, all of which are direct descendants of the M3 fighting knife and have spear-point blade with a half sharpened secondary edge. The newer M9 bayonet has a clip-point blade with saw teeth along the spine and can be used as a multi-purpose knife and wire-cutter when combined with its scabbard. The current USMC OKC-3S bayonet bears a resemblance to the Marines' iconic Ka-Bar fighting knife with serrations near the handle.
Bipod
[edit]For use as an ad-hoc automatic rifle, the M16 and M16A1 could be equipped with the XM3 bipod, later standardized as the Bipod, M3 (1966)[177] and Rifle Bipod M3 (1983).[178] Weighing only 0.6 lb, the simple and non-adjustable bipod clamps to the barrel of the rifle to allow for supported fire.
NATO standards
[edit]In March 1970, the U.S. recommended that all NATO forces adopt the 5.56×45mm cartridge.[179] This shift represented a change in the philosophy of the military's long-held position about caliber size. By the mid 1970s, other armies were looking at M16-style weapons. A NATO standardization effort soon started and tests of various rounds were carried out starting in 1977.[179] The U.S. offered the 5.56×45mm M193 round, but there were concerns about its penetration in the face of the wider introduction of body armor.[180] In the end, the Belgian 5.56×45mm SS109 round was chosen (STANAG 4172) in October 1980.[181] The SS109 round was based on the U.S. cartridge but included a new stronger, heavier, 62-grain bullet design, with better long-range performance and improved penetration (specifically, to consistently penetrate the side of a steel helmet at 600 meters).[180] Due to its design and lower muzzle velocity (about 3110 ft/s)[23] the Belgian SS109 round is considered more humane because it is less likely to fragment than the U.S. M193 round.[146] The NATO 5.56×45mm standard ammunition produced for U.S. forces is designated M855.
In October 1980, shortly after NATO accepted the 5.56×45mm NATO rifle cartridge.[182] Draft Standardization Agreement 4179 (STANAG 4179) was proposed to allow NATO members to easily share rifle ammunition and magazines down to the individual soldier level. The magazine chosen to become the STANAG magazine was originally designed for the U.S. M16 rifle. Many NATO member nations, but not all, subsequently developed or purchased rifles with the ability to accept this type of magazine. However, the standard was never ratified and remains a 'Draft STANAG'.[183]
All current M16 type rifles are designed to fire STANAG 22 mm rifle grenades from their integral flash hiders without the use of an adapter. These 22 mm grenade types range from anti-tank rounds to simple finned tubes with a fragmentation hand grenade attached to the end. They come in the "standard" type which are propelled by a blank cartridge inserted into the chamber of the rifle. They also come in the "bullet trap" and "shoot through" types, as their names imply, they use live ammunition. The U.S. military does not generally use rifle grenades; however, they are used by other nations.[184]
The NATO Accessory Rail STANAG 4694, or Picatinny rail STANAG 2324, or a "Tactical Rail" is a bracket used on M16 type rifles to provide a standardized mounting platform. The rail comprises a series of ridges with a T-shaped cross-section interspersed with flat "spacing slots". Scopes are mounted either by sliding them on from one end or the other; by means of a "rail-grabber" which is clamped to the rail with bolts, thumbscrews or levers; or onto the slots between the raised sections. The rail was originally for scopes. However, once established, the use of the system was expanded to other accessories, such as tactical lights, laser aiming modules, night vision devices, reflex sights, foregrips, bipods, and bayonets.
Currently, the M16 is in use by 15 NATO countries and more than 80 countries worldwide.
Variants
[edit]M16
[edit]This was the first M16 variant adopted operationally, originally by the U.S. Air Force. It was equipped with triangular handguards, buttstocks without a compartment for the storage of a cleaning kit,[83] a three-pronged "duckbill" flash suppressor designed to preserve the shooter's night vision by disrupting the flash, full auto, and no forward assist. The M16 has a safe/semi/auto selective fire trigger group. Bolt carriers were originally chrome plated and slick-sided, lacking forward assist notches. Later, the chrome-plated carriers were dropped in favor of Army-issued notched and parkerized carriers, though the interior portion of the bolt carrier is still chrome-lined. The barrel rifling had a 1:12 (305 mm) twist rate to adequately stabilize the M193 ball and M196 tracer ammunition. The Air Force continued to operate these weapons until around 2001, at which time the Air Force converted all of its M16s to the M16A2 configuration.
The M16 was also adopted by the British SAS, who used it during the Falklands War.[185]
XM16E1 and M16A1 (Colt Model 603)
[edit]The U.S. Army XM16E1 was essentially the same weapon as the M16 with the addition of a forward assist and corresponding notches in the chrome bolt carrier. A rib was built into the side of the receiver to help prevent accidentally pressing the magazine release button while closing the ejection port cover.
The M16A1 was the finalized production model and was produced from February 1967 until 1982. To address issues with the XM16E1, for the M16A1 a closed, birdcage symmetric flash suppressor with open side slots to the top, bottom, left and right replaced the XM16E1's three-pronged flash suppressor, which caught on twigs and leaves, from 1967 onwards.[186] Various other changes were made after numerous problems in the field. Cleaning kits were developed and issued, while barrels with chrome-plated chambers and later fully lined bores were introduced. A small storage compartment inside the stock was introduced.[187] The buttstock storage compartment is often used for storing a basic cleaning kit. To promote reliability and durability, the mechanical behavior of the operating system was revised to make it compatible for using US military issued ammunition loaded with WC846 ball powder (which reaches peak pressure significantly quicker than the extruded IMR8208M powder and increases the cyclic rate of fire for which the operating system was originally designed). Revisions like reducing the diameter of the gas port to mitigate the higher port pressure caused by the ball powder to properly gas the operating system again, updating the buffer assembly, changing the bolt carrier surface finish to manganese phosphate and the gas tube material to stainless steel contributed to improved mechanical behavior.
The rib was extended on production M16A1s to help in preventing the magazine release from inadvertently being pressed. The hole in the bolt that accepts the cam pin was crimped inward on one side, in such a way that the cam pin may not be inserted with the bolt installed backwards, which would cause failures to eject until corrected. With these and other changes, the malfunction rate slowly declined, and new soldiers were generally unfamiliar with early problems.
The M16A1 saw limited use in training capacities until the early 2000s,[188][189][190] but is no longer in active service with the U.S., although is still standard issue in many world armies.
M16A2
[edit]The development of the M16A2 rifle was originally requested by the United States Marine Corps in 1979 as a result of combat experience in Vietnam with the M16A1.[191] It was officially adopted by the Department of Defense as the "Rifle, 5.56 mm, M16A2" in 1983.[192] The Marines were the first branch of the U.S. Armed Forces to adopt it, in the early/mid-1980s, with the United States Army following suit in 1986.[193]
Modifications to the M16A2 were extensive. In addition to the then new STANAG 4172[194] 5.56×45mm NATO chambering and its accompanying rifling, the barrel was made with a greater thickness in front of the front sight post, to resist bending in the field and increase rigidity under sustained fire. The rest of the barrel was maintained at the original thickness to enable the M203 grenade launcher to be attached. The barrel rifling was revised to a faster 1:7 (178 mm) twist rate to adequately stabilize the new 5.56×45mm NATO SS109/M855 ball and L110/M856 tracer ammunition. The heavier longer SS109/M855 bullet reduced muzzle velocity from 3,260 ft/s (994 m/s), to about 3,110 ft/s (948 m/s)[195]
A new adjustable rear sight was added, allowing the rear sight to be dialed in for specific range settings between 300 and 800 meters to take full advantage of the ballistic characteristics of the SS109/M855 rounds and to allow windage adjustments without the need of a tool or cartridge[196] The flash suppressor was again modified, this time to be closed on the bottom, so the new birdcage-type muzzle device would not kick up dirt or snow when being fired from the prone position, and additionally act as an asymmetric recoil compensator to reduce muzzle climb.[197][186]
A spent case deflector was incorporated into the upper receiver immediately behind the ejection port to prevent (hot) cartridge cases from striking left-handed users.[196] The action was also modified, replacing the fully automatic setting with a three-round burst setting.[196] When using a fully automatic weapon, inexperienced troops often hold down the trigger and "spray" when under fire. The U.S. Army concluded that three-shot groups provide an optimum combination of ammunition conservation, accuracy, and firepower.[198] The number of rounds fired in a burst is determined by a cam mechanism that trips the trigger mechanism for each shot in the burst. For the burst the trigger must be held down for the full duration of the burst. The M16 series will terminate the burst if the trigger is released before the burst is complete but keep the cam in position. Thus, the next time the trigger is pulled, the weapon will only fire one or two rounds.[199][200] The USMC has retired the M16A2 in favor of the newer M16A4; a few M16A2s remain in service with the U.S. Army Reserve and National Guard.[201][202]
The handguard was modified from the original triangular shape to a round one, which better fit smaller hands and could be fitted to older models of the M16. The new handguards were also symmetrical, so armories need not separate left- and right-hand spares. The handguard retention ring was tapered to make it easier to install and uninstall the handguards.[196]
The new buttstock became ten times stronger than the original due to advances in polymer technology since the early 1960s. Original M16 stocks were made from cellulose-impregnated phenolic resin; the newer M16A2 stocks were engineered from DuPont Zytel glass-filled thermoset polymers and became a replacement part for the preceding M16A1. The new buttstock was lengthened by 5⁄8 in (15.9 mm) and included a fully textured polymer buttplate for better grip on the shoulder and retained a panel for accessing a small compartment inside the stock, often used for storing a basic cleaning kit.[203]
The A2 profile has a greater thickness from the front sight post to the muzzle, after bending in this area was reported in the field. Tests by the M16A2 team showed that this increased the resistance to intentional bending in this area by a factor 9. As to not further increase weight beyond acceptable levels, and to maintain commonality with the M203 grenade launcher, the rear half under the handguard maintained its original thin profile. After the new technical data was submitted, the team discovered that they had made an error in assessing the problem - the replaced bent barrels were not actually bent. When inspecting some using a borescope, they discovered that a burr left from drilling/reaming the gas port was causing copper fouling to build up at the front sight block, interfering with the gauge used. Cleaning this fouling caused the "bent" barrels to re-pass inspection. However this discovery came too late in the process to revert the change in profile.[204]
A notch for the middle finger was added to the pistol grip as well as more texture to enhance the grip. The new pistol grips were engineered from Zytel glass-filled thermoset polymers. The M16A2 pistol grip became a replacement part for the preceding M16A1.[205] The standard Model 645 M16A2 has a safe/semi/three-round burst selective fire trigger group. It became standard issue for the U.S. Marine Corps and Army.
There is also a safe/semi/three-round burst/automatic selective fire trigger group Model 708 version of M16A2 rifle named "M16A2 Enhanced", used by some militaries around the world.[206]
M16A3
[edit]The M16A3 is a modified version of the M16A2 adopted in small numbers by the U.S. Navy SEALs, Seabees, and security units.[207] It features the M16A1 selective fire trigger group providing "safe", "semi-automatic" and "fully automatic" modes. Otherwise, it is externally similar to the M16A2. There were 2 versions of the M16A3, the M16A3E1, and M16A3E2. The E1 was a fixed carry handle model, where E2 was a removable carry handle.
M16A4
[edit]Adopted in July 1997, the M16A4 is the fourth generation of the M16 series. It is equipped with a removable carrying handle and Picatinny rail for mounting optics and other ancillary devices.[22] The M16A4 rear aperture sights are adjustable from 300 m (330 yd) up to 600 m (660 yd), where the further similar M16A2 iron sights line can reach up to 800 m (870 yd). The introduction of the Picatinny rail required the use of a higher F-marked front sight base to raise the post. The FN M16A4, using safe/semi/three-round burst selective fire, became standard issue for the U.S. Marine Corps.
Colt also produces M16A4 models for international purchases:
- R0901 / RO901/ NSN 1005-01-383-2872 (Safe/Semi/Auto)
- R0905 / RO905 (Safe/Semi/Burst)
A study of significant changes to Marine M16A4 rifles released in February 2015 outlined several new features that could be added from inexpensive and available components. Those features included: a muzzle compensator in place of the flash suppressor to manage recoil and allow for faster follow-on shots, though at the cost of noise and flash signature and potential overpressure in close quarters; a heavier and/or free-floating barrel to increase accuracy from 4.5 MOA (Minute(s) Of Angle) to potentially 2 MOA; changing the reticle on the Rifle Combat Optic from chevron-shaped to a semi-circular reticle with a dot at the center used in the M27 IAR's Squad Day Optic so as not to obscure the target at long distance; using a trigger group with a more consistent pull force, even a reconsideration of the burst capability; and the addition of ambidextrous charging handles and bolt catch releases for easier use with left-handed shooters.[208]
In 2014, Marine units were provided with a limited number of adjustable stocks in place of the traditional fixed stock for their M16A4s to issue to smaller Marines who would have trouble comfortably reaching the trigger when wearing body armor. The adjustable stocks were added as a standard authorized accessory, meaning units can use operations and maintenance funds to purchase more if needed.[209]
The Marine Corps had long maintained the full-length M16 as their standard infantry rifle, but in October 2015 the switch to the M4 carbine was approved as the standard-issue weapon, giving Marine infantry a smaller and more compact weapon. Enough M4s were already in the inventory to re-equip all necessary units by September 2016, and M16A4s were moved to support[25][210] and non-infantry Marines.[211]
Summary of differences
[edit]Colt model no. | Military designation | 20-in Barrel w/ bayonet lug | Handguard type | Buttstock type | Pistol grip type | Lower receiver type | Upper receiver type | Rear sight type | Front sight type | Muzzle device | Forward assist? | Case deflector? | Trigger pack |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
601 | AR-15 Designated M16 on 3 Dec 1963 | A1 profile (1:14 twist) | Green or brown full-length triangular | Green or brown fixed A1 | A1 | A1 | A1 | A1 | A1 | Duckbill flash suppressor | No | No | Safe/Semi/Auto |
602 | AR-15 Designated M16 3 Dec 1963 - there was no XM16 | A1 profile (1:12 twist) | Full-length triangular | Fixed A1 | A1 | A1 | A1 | A1 | A1 | Duckbill or three-prong flash suppressor | No | No | Safe/Semi/Auto |
603 | XM16E1 designation changed to M16A1 Feb1967 with standardisation | A1 profile (1:12 twist) | Full-length triangular | Fixed A1 | A1 | A1 | A1 | A1 | A1 | Three-prong or M16A1 birdcage flash suppressor | Yes | No | Safe/Semi/Auto |
603 | M16A1 | A1 profile (1:12 twist) | Full-length triangular | Fixed A1 | A1 | A1 | A1 | A1 | A1 | Three-prong or birdcage flash suppressor | Yes | Yes or No | Safe/Semi/Auto |
604 | M16 | A1 profile (1:12 twist) | Full-length triangular | Fixed A1 | A1 | A1 | A1 | A1 | A1 | Three-prong or M16A1-style birdcage flash suppressor | No | No | Safe/Semi/Auto |
645 | M16A1E1/PIP | A2 profile (1:7 twist) | Full-length ribbed | Fixed A2 | A1 | A1 or A2 | A1 or A2 | A1 or A2 | A2 | M16A1 or M16A2-style birdcage flash suppressor | Yes | Yes or No | Safe/Semi/Auto or Safe/Semi/Burst |
645 | M16A2 | A2 profile (1:7 twist) | Full-length ribbed | Fixed A2 | A2 | A2 | A2 | A2 | A2 | M16A2-style birdcage flash suppressor | Yes | Yes | Safe/Semi/Burst or Safe/Semi/Burst/Auto |
708 | M16A2 ENHANCED | A2 profile (1:7 twist) | Full-length ribbed | Fixed A2 | A2 | A2 | A2 | A2 | A2 | M16A2-style birdcage flash suppressor | Yes | Yes | Safe/Semi/Burst/Auto |
645E | M16A2E1 | A2 profile (1:7 twist) | Full-length ribbed | Fixed A2 | A2 | A2 | Flattop with Colt Rail | Flip-up | Folding | M16A2-style birdcage flash suppressor | Yes | Yes | Safe/Semi/Burst or Safe/Semi/Burst/Auto |
N/A | M16A2E2 | A2 profile (1:7 twist) | Full-length semi-beavertail w/ HEL guide | Retractable ACR | ACR | A2 | Flattop with Colt rail | None | A2 | ACR muzzle brake | Yes | Yes | Safe/Semi/Burst or Safe/Semi/Burst/Auto |
646 | M16A3 (M16A2E3) | A2 profile (1:7 twist) | Full-length ribbed | Fixed A2 | A2 | A2 | A2 | A2 | A2 | M16A2-style birdcage flash suppressor | Yes | Yes | Safe/Semi/Auto |
655 | M16A1 Special High Profile | HBAR profile (1:12 twist) |
Full-length triangular | Fixed A1 | A1 | A1 | A1 | A1 | A1 | M16A1-style birdcage flash suppressor | Yes | No | Safe/Semi/Auto |
656 | M16A1 Special Low Profile | HBAR profile (1:12 twist) |
Full-length triangular | Fixed A1 | A1 | A1 | A1 with modified Weaver base | Low Profile A1 | Hooded A1 | M16A1-style birdcage flash suppressor | Yes | No | Safe/Semi/Auto |
945 | M16A4 (M16A2E4) | A2 profile (1:7 twist) | Full-length ribbed or KAC M5 RAS | Fixed A2/M4 Collapsed stock | A2 | A2 | Flattop with MIL-STD-1913 rail | None | A4 | M16A2-style birdcage flash suppressor | Yes | Yes | Safe/Semi/Auto (RO901) or Safe/Semi/Burst (RO905) |
Derivatives
[edit]Colt Commando (XM177 & GAU-5)
[edit]In Vietnam, some soldiers were issued a carbine version of the M16 named XM177. The XM177 had a shorter 10 in (254 mm) barrel and a telescoping stock, which made it substantially more compact. It also possessed a combination flash hider/sound moderator to reduce problems with muzzle flash and loud report. The Air Force's GAU-5/A (XM177) and the Army's XM177E1 variants differed over the latter's inclusion of a forward assist, although some GAU-5s do have the forward assist. The final Air Force GAU-5/A and Army XM177E2 had an 11.5 in (292 mm) barrel with a longer flash/sound suppressor. The lengthening of the barrel was to support the attachment of Colt's own XM148 40 mm grenade launcher. These versions were also known as the Colt Commando model commonly referenced and marketed as the CAR-15. The variants were issued in limited numbers to special forces, helicopter crews, Air Force pilots, Air Force Security Police Military Working Dog (MWD) handlers, officers, radio operators, artillerymen, and troops other than front line riflemen. Some USAF GAU-5A/As were later equipped with even longer 14.5-inch (370 mm) 1/12 rifled barrels as the two shorter versions were worn out. The 14.5-inch (370 mm) barrel allowed the use of MILES gear and for bayonets to be used with the sub-machine guns (as the Air Force described them). By 1989, the Air Force started to replace the earlier barrels with 1/7 rifled models for use with the M855-round. The weapons were given the redesignation of GUU-5/P.
These were used by the British Special Air Service during the Falklands War.[185]
M4 carbine
[edit]The M4 carbine was developed from various outgrowths of these designs, including a number of 14.5-inch (368 mm)-barreled A1 style carbines. The XM4 (Colt Model 720) started its trials in 1984, with a barrel of 14.5 inches (370 mm). The weapon became the M4 in 1991. Officially adopted as a replacement for the M3 "Grease Gun" (and the Beretta M9 and M16A2 for select troops) in 1994, it was used with great success in the Balkans and in more recent conflicts, including the Afghanistan and Iraq theaters. The M4 carbine has a three-round burst firing mode, while the M4A1 carbine has a fully automatic firing mode. Both have a Picatinny rail on the upper receiver, allowing the carry handle/rear sight assembly to be replaced with other sighting devices.
M4 Commando
[edit]Colt also returned to the original "Commando" idea, with its Model 733, essentially a modernized XM177E2 with many of the features introduced on the M16A2.
M5 carbine
[edit]The M5 carbine system was developed by Colt as an improvement on the M4 carbine. It incorporates a fully ambidextrous lower receiver, free-floating barrel and lengthened upper rail. The M5 carbine has four possible barrel lengths: 10.3, 11.5, 14.5 and 16.1 inches. Other M5 variants and calibers are the: M5 SCW (Sub-compact weapon) (5.56×45mm); M5 300 (.300 AAC Blackout); M5 SMG (9×19mm); CMK (7.62×39mm); M7 Battle Rifle (7.62×51mm) and Designated Marksman and Semi-Automatic Sniper System (both 5.56×45mm).
Diemaco C7 and C8
[edit]The Diemaco C7 and C8 are a family of rifles developed concurrently with the M16A2.[212] They are the standard issued rifle for Canadian Forces, manufactured by Diemaco (currently Colt Canada). The C7 is a branch developed from the experimental M16A1E1. Like earlier M16s, it can be fired in either semi-automatic or automatic mode, instead of the burst function selected for the M16A2. The C7 also features the structural strengthening, improved handguards, and longer stock developed for the M16A2. Diemaco changed the trapdoor in the buttstock to make it easier to access and a spacer of 0.5 inches (13 mm) is available to adjust stock length to user preference, along with the addition of hammer-forged barrels. Unlike the American M16A2s, the Diemaco C7s utilize A1 style rear sights. The Canadians originally desired to use a heavy barrel profile instead.
The C7 has been developed to the C7A1, with a Weaver rail on the upper receiver for a C79 3.4×28 optical sight, and to the C7A2, with different furniture and internal improvements. The Diemaco produced Weaver rail on the original C7A1 variants does not meet the M1913 "Picatinny" standard, leading to some problems with mounting commercial sights. This is easily remedied with minor modification to the upper receiver or the sight itself. Since Diemaco's acquisition by Colt to form Colt Canada, all Canadian produced flattop upper receivers are machined to the M1913 standard.
The C8 is the carbine version of the C7.[213] The C7 and C8 are also used by Hærens Jegerkommando, Marinejegerkommandoen and FSK (Norway), Denmark's Armed Forces (all branches), and the Netherlands Armed Forces as its main infantry weapon. Following trials, variants became the weapon of choice of the British SAS.
Mk 4 Mod 0
[edit]The Mk 4 Mod 0 was a variant of the M16A1 produced for the U.S. Navy SEALs during the Vietnam War and adopted in April 1970. It differed from the basic M16A1 primarily in being optimized for maritime operations and coming equipped with a sound suppressor. Most of the operating parts of the rifle were coated in Kal-Guard, a hole of 0.25 inches (6.4 mm) was drilled through the stock and buffer tube for drainage, and an O-ring was added to the end of the buffer assembly. The weapon could reportedly be carried to the depth of 200 feet (61 m) in water without damage. The initial Mk 2 Mod 0 Blast Suppressor was based on the U.S. Army's Human Engineering Lab's (HEL) M4 noise suppressor. The HEL M4 vented gas directly from the action, requiring a modified bolt carrier. A gas deflector was added to the charging handle to prevent gas from contacting the user. Thus, the HEL M4 suppressor was permanently mounted though it allowed normal semi-automatic and automatic operation. If the HEL M4 suppressor were removed, the weapon would have to be manually loaded after each single shot. On the other hand, the Mk 2 Mod 0 blast suppressor was considered an integral part of the Mk 4 Mod 0 rifle, but it would function normally if the suppressor were removed. The Mk 2 Mod 0 blast suppressor also drained water much more quickly and did not require any modification to the bolt carrier or to the charging handle. In the late 1970s, the Mk 2 Mod 0 blast suppressor was replaced by the Mk 2 blast suppressor made by Knight's Armament Company (KAC). The KAC suppressor can be fully submerged and water will drain out in less than eight seconds. It will operate without degradation even if the rifle is fired at the maximum rate of fire. The U.S. Army replaced the HEL M4 with the much simpler Studies in Operational Negation of Insurgency and Counter-Subversion (SIONICS) MAW-A1 noise and flash suppressor.
US Navy Mk 12 Special Purpose Rifle
[edit]Developed to increase the effective range of soldiers in the designated marksman role, the U.S. Navy developed the Mark 12 Special Purpose Rifle (SPR). Configurations in service vary, but the core of the Mark 12 SPR is an 18" heavy barrel with muzzle brake and free float tube. This tube relieves pressure on the barrel caused by standard handguards and greatly increases the potential accuracy of the system. Also common are higher magnification optics ranging from the 6× power Trijicon ACOG to the Leupold Mark 4 Tactical rifle scopes. Firing Mark 262 Mod 0 ammunition with a 77gr Open tip Match bullet, the system has an official effective range of 600+ meters. However, published reports of confirmed kills beyond 800 m from Iraq and Afghanistan were not uncommon.[citation needed]
M231 Firing Port Weapon (FPW)
[edit]The M231 Firing Port Weapon (FPW) is an adapted version of the M16 assault rifle for firing from ports on the M2 Bradley. The infantry's normal M16s are too long for use in a "buttoned up" fighting vehicle, so the FPW was developed to provide a suitable weapon for this role.
Colt Model 655 and 656 "Sniper" variants
[edit]With the expanding Vietnam War, Colt developed two rifles of the M16 pattern for evaluation as possible light sniper or designated marksman rifles. The Colt Model 655 M16A1 Special High Profile was essentially a standard A1 rifle with a heavier barrel and a scope bracket that attached to the rifle's carry handle. The Colt Model 656 M16A1 Special Low Profile had a special upper receiver with no carrying handle. Instead, it had a low-profile iron sight adjustable for windage and a Weaver base for mounting a scope, a precursor to the Colt and Picatinny rails. It also had a hooded front iron sight in addition to the heavy barrel. Both rifles came standard with either a Leatherwood/Realist scope 3–9× Adjustable Ranging Telescope. Some of them were fitted with a Sionics noise and flash suppressor. Neither of these rifles were ever standardized.
These weapons can be seen in many ways to be predecessors of the U.S. Army's SDM-R and the USMC's SAM-R weapons.
Mekut’zrar
[edit]Israel was supplied with large numbers of M16A1 rifles by the US Government, many of which were shortened to make them more suitable for urban combat, storage in vehicles, and policing use by shortening them. The 20-inch M16A1 barrel was pruned back to just behind the gas port, while a new gas port was drilled to accommodate a carbine-length gas system as the front sight base was pinned in place. The barrel was also threaded for a standard M16A1 birdcage flash suppressor and the resulting barrel was just shy of 13-inch overall, and a CAR-15 type collapsible buttstock was fitted to replaced the fixed M16A1 fixed buttstock, thus they approximate the size of CAR-15 type carbines. The informal term "Mekut’zrar" translates to "sawed-off" or "shorty".[214]
Others
[edit]- The Chinese Norinco CQ is an unlicensed derivative of the M16A1 made specifically for export, with the most obvious external differences being in its handguard and revolver-style pistol grip.
- The ARMADA rifle (a copy of the Norinco CQ) and TRAILBLAZER carbine (a copy of the Norinco CQ Type A) are manufactured by S.A.M. – Shooter's Arms Manufacturing, a.k.a. Shooter's Arms Guns & Ammo Corporation, headquartered in Metro Cebu, Republic of the Philippines.
- The S-5.56 rifle, a clone of the Type CQ, is manufactured by the Defense Industries Organization of Iran. The rifle itself is offered in two variants: the S-5.56 A1 with a 19.9-inch barrel and 1:12 pitch rifling (1 turn in 305 mm), optimized for the use of the M193 Ball cartridge; and the S-5.56 A3 with a 20-inch barrel and a 1:7 pitch rifling (1 turn in 177, 8 mm), optimized for the use of the SS109 cartridge.[215]
- The KH-2002 is an Iranian bullpup conversion of the locally produced S-5.56 rifle. Iran intends to replace the standard-issue weapon of its armed forces with this rifle.
- The Terab rifle is a copy of the DIO S-5.56 manufactured by the Military Industry Corporation of Sudan.[216]
- The M16S1 is the M16A1 rifle made under license by ST Kinetics in Singapore. It was the standard-issue weapon of the Singapore Armed Forces. It is being replaced by the newer SAR 21 in most branches. It is, in the meantime, the standard-issue weapon in the reserve forces.
- The MSSR rifle is a sniper rifle developed by the Philippine Marine Corps Scout Snipers that serves as their primary sniper weapon system.
- The Special Operations Assault Rifle (SOAR) assault carbine was developed by Ferfrans based on the M16 rifle. It is used by the Special Action Force of the Philippine National Police.
- Taiwan uses piston-driven M16-based weapons as their standard rifle. These include the T65, T86 and T91 assault rifles.
- Ukraine has announced plans in January 2017 for Ukroboronservis and Aeroscraft to produce the M16 WAC47, an accurized M4 variation that uses standard 7.62×39mm AK-47 magazines.[217]
- New Zealand has adopted the Lewis Machine and Tool Company's upgraded version of the M16 system to replace the Steyr AUG. This CQB16 rifle will be fielded in 2017 and is named MARS-L (Modular Ambidextrous Rifle System-Light).
Production and users
[edit]The M16 is the most commonly manufactured 5.56×45mm rifle in the world. Currently, the M16 is in use by 15 NATO countries and more than 80 countries worldwide. Together, numerous companies in the United States, Canada, and China have produced more than 8,000,000 rifles of all variants. Approximately 90% are still in operation.[218] The M16 replaced both the M14 rifle and M2 carbine as standard infantry rifle of the U.S. armed forces. Although, the M14 continues to see limited service, mostly in sniper, designated marksman, and ceremonial roles.
Users
[edit]- Afghanistan: Taliban use M16A2 and M16A4 rifles previously supplied for Afghan National Army. Also in use with the Badri 313 Battalion.[219]
- Albania[220]
- Antigua and Barbuda[220]
- Argentina: Currently use the M16A2 (by all Armed Forces).[221]
- Azerbaijan: M16A4, used by the special forces and State Border Service (DSX).[222]
- Bahrain[223]
- Bangladesh[220]
- Barbados[224]
- Bosnia and Herzegovina:[224] M16A1/A4[225]
- Belize[224]
- Bolivia[224] M16A1/A2
- Brazil: Used by special forces in the final phase of the Araguaia guerrilla war.[226] M16A2s used by Brazilian Marine Corps[227]
- Brunei[224] M16A2 is used by the Royal Brunei Armed Forces as their main service rifle.[228]
- Burundi: Burundian rebels[229]
- Cambodia[230] M16A1
- Cameroon[224]
- Canada: Colt Canada C7 and C8 variants made by Colt Canada are used by the Canadian Forces.[231]
- Central African Republic[232]
- Chile[224] M16A1 used by Chilean Marine Corps.
- Colombia[220]
- Congo-Kinshasa[233]
- Costa Rica[218]
- Czech Republic[220]
- Denmark:[234] C7A1 variant formerly used by all personal, but now only serves a role with the Danish royal guards and some volunteers of the Danish home guard.[citation needed]
- Djibouti[220]
- Dominican Republic[224]
- East Timor[235] M16A2
- Ecuador[224]
- Egypt[220]
- El Salvador[224] M16A1/A2/A3/A4
- Estonia[236] Ex-U.S. M16A1s
- Falkland Islands[220]
- Fiji[224] M16A1/A2
- France: Used by counter-terrorism and special operations forces[237][224]
- Gabon[224]
- Georgia[220]
- Ghana[224] M16A2
- Greece[224] M16A2/A3/A4/M4/A2E M4 is used by the Special Forces of the Hellenic Army, Hellenic Air Force and the Hellenic Navy.[206]
- Grenada[224]
- Guatemala[233] M16A1/M16A2
- Haiti[233]
- Hungary[220]
- Honduras[238] M16A1
- India[224]
- Indonesia[224] M16A1
- Iraq[239] M16A2/A4.
- Israel[224] M16A1/M16A2E3
- Italy[220]
- Ivory Coast[241] M16A1
- Jamaica[224] M16A1/M16A2
- Japan: M16A1 is used by Western Army Infantry Regiment along with Howa Type 89 rifles.[242]
- Jordan[224] M16A1/A2
- Kenya[220]
- Kuwait[243] M16A1/A2
- Latvia:[244]
- Lebanon[233] M16A1[245]/A2/A4
- Lesotho[224]
- Liberia[233] M16A1/A2
- Lithuania: Lithuanian Armed Forces[246]
- Malaysia[224] Malaysian Armed Forces, Royal Johor Military Force, Royal Malaysia Police, Malaysian Maritime Enforcement Agency and RELA Corps.
- Mauritius[247][better source needed]
- Mexico:[224] M16A2 is used by the Mexican Marines in the Mexican Drug War.[248]
- Monaco: Compagnie des Carabiniers du Prince[249]
- Mongolia[220]
- Morocco[224] M16A1/M16A2/M16A3/M16A4
- Myanmar: M16S1s made by Chartered Industries of Singapore provided secretly in violation of license agreements with Colt.[250]
- Nepal[251] M16A2 and M16A4; captured M16A2 were also used by Maoist rebels of the People's Liberation Army, Nepal during the Nepalese Civil War.[252]
- Netherlands: C7 and C8 variants are used by the Military of the Netherlands and LSW is used by Netherlands Marine Corps.[253]
- Nicaragua: Used by the National Police of Nicaragua and army.[220]
- Nigeria[224]
- North Korea: M16A1 (probably unlicensed copies) used by KPA special forces. Used during the Gangneung incident in 1996.[254][255]
- Oman[224] M16A1
- Pakistan[224] M16A1
- Palestinian Authority: Used by Palestinian Security Forces[256] and various local militant forces.[257][258]
- Panama[224] M16A1.
- Papua New Guinea[259] M16A2
- Bougainville: Used by Bougainville Revolutionary Army. Captured from Papua New Guinea Defence Force.[260]
- Peru[224] M16A2. M16A1 Used by Navy Special Operation Forces,[261] and by Directorate of Special Operations of the national police[262]
- Philippines: Armed Forces of the Philippines, Philippine National Police and Bureau of Corrections[263] Manufactured under license by Elisco Tool and Manufacturing.[264] M16A1s and M653Ps in use. Supplemented in Special Forces by the M4 carbine.Bureau of Jail Management and Penology -90 Units delivered in 2011.[265]
- Portugal: A small number of M16A2s are used by the Special Actions Detachment of the Portuguese Navy.[266]
- Qatar[224] M16A1.
- Romania[220] M16A2
- Senegal: M16A1 and M16A2[267]
- Serbia[220]
- Sierra Leone: 1,000+ M16A1s in use[268]
- Singapore: Local variant of the M16A1 (M16S1) manufactured under license by ST Kinetics.[233]
- Somalia[224]
- South Africa: Used by Special Forces.[224] Likely received from Moroccan stocks.[269]
- South Korea: During the Vietnam War, the U.S. provided 27,000 M16 rifles to the Republic of Korea Armed Forces in Vietnam. Also, 600,000 M16A1s (Colt Model 603K) were manufactured under license by Daewoo Precision Industries with deliveries from 1974 to 1985.[233] KATUSA (Korean Augmentation to the U.S. Army) soldiers who serve in the U.S. Army use the M16A2.[233]
- Sri Lanka[233]
- Sudan[220]
- Suriname[220]
- Sweden A small number of M16A2s are used by the Swedish Armed Forces for familiarization training, as well as a similar number of AKMs, but they are not issued to combat units.[note 15] The Automatkarbin 4 and Automatkarbin 5 rifles are used by the Swedish Army.
- Syria: M16A1, M16A2. Captured from rebel groups.[271][272][273]
- Taiwan: M16A1, as well as indigenous Type 65/65K1/65K2, Type 86 and Type 91 (with AR-18 style gas piston system).[274][220]
- Thailand[224] M16A1/A2/A4. A variant of XM177 replica called Type 49 carbine (ปลส.49) Used in South Thailand insurgency.
- Tunisia[224] M16A2/A4
- Turkey[224] M16A1/A2/A4
- Uganda[224][227]
- Ukraine[275] Multiple M16 variants[276]
- United Arab Emirates[224]
- United Kingdom: One of first military customers as UK purchased first AR-15s to be used in jungle warfare in Indonesia–Malaysia confrontation.[277] The Colt Canada C8 (L119A1/L119A2) variant is used by Royal Military Police Close Protection Units,[278] the Pathfinder Group, United Kingdom Special Forces[224] and 43 Commando Fleet Protection Group Royal Marines[279]
- United States[280]
- Uruguay[224]
- Vietnam: Obtained from South Vietnam following Vietnam War[281] Over 946,000 M16s were captured in 1975 alone.[282] XM16E1, M16A1 used.
- Yemen[220]
Non-state users
[edit]- Democratic Forces for the Liberation of Rwanda[283]
- East Indonesia Mujahideen[284]
- Free Papua Movement[285]
- ISIL[286][287]
- Kurdistan Workers' Party[290][291]
- Syrian opposition[292]
- New People's Army: Captured from AFP and PNP, supplied by sympathizers, or purchased from the black market.[293][294][295]
Former users
[edit]- Used by the Afghan mujahideen during the Soviet–Afghan War.[296]
- Islamic Republic of Afghanistan: Standard issue rifle of the Afghan National Army.[297] Colt Canada C7 variants also saw limited service.
- Australia:[298] M16A1 introduced during the Vietnam War and replaced by the F88 Austeyr in 1989.
- Bangsamoro Republik
- FARC[299]
- Free Aceh Movement[300]
- British Hong Kong: M16A2 variant. Used by the Royal Hong Kong Regiment.[301]
- Laos: Received from the US government during the Vietnam War and Laotian Civil War.[302]
- Moro Islamic Liberation Front
- New Zealand[224] M16 - replaced in 1988 by Steyr AUG, which was being replaced with a non-Colt M16 variant in 2016.[303]
- : Provisional IRA received a number of M16s during The Troubles in Northern Ireland.[304]
- Rhodesia: M16A1[305]
- South Vietnam: 6,000 M16 and 938,000 M16A1 weapons, 1966–1975[306]
- Viet Cong: Captured from U.S. and ARVN forces.[307]
- Zaire[282][308]
Conflicts
[edit]1960s
[edit]- Vietnam War (1955–1975)
- Laotian Civil War (1959–1975)
- Indonesia–Malaysia confrontation (1963–1966)
- Dominican Civil War[309] (1965)
- The Troubles[310] (Late 1960s–1998)
- Colombian conflict[299] (1964–present)
- Rhodesian Bush War [305] (1964–1979)
- Communist insurgency in Thailand (1965–1983)
- Cambodian Civil War[311] (1968–1975)
- Communist insurgency in Malaysia (1968–1989)
- Moro conflict[312] (1969–2019)
- Communist rebellion in the Philippines[313] (1969–present)
1970s
[edit]- Araguaia Guerrilla War[226] (1972–1974)
- Armed resistance in Chile (1973–1990)[314]
- Yom Kippur War (1973)
- Lebanese Civil War (1975–1990)
- East Timor conflict (1975-1999)
- Insurgency in Aceh (1976–2005)
- Shaba II[315] (1978)
- Cambodian–Vietnamese War (1978–1989)
- Sino-Vietnamese War[316] (1979)
- Sino-Vietnamese conflicts (1979–1991)
- Salvadoran Civil War (1979–1992)
- Soviet–Afghan War[317] (1979–1989)
1980s
[edit]- Falklands War (1982)
- Second Sudanese Civil War (1983–2005)
- Sri Lankan Civil War (1983–2009)
- United States invasion of Grenada (1983)
- Thai–Laotian Border War (1987–1988)
- Bougainville conflict (1988–1998)[259]
- Philippine coup attempt (1989)
- First Liberian Civil War (1989–1997)[318]
- United States invasion of Panama (1989–1990)
1990s
[edit]- Gulf War (1990–1991)
- Somali Civil War (1991–present)
- Yugoslav Wars (1991–2001)
- Sierra Leone Civil War (1991–2002)[268]
- Burundian Civil War (1993–2005)
- Cenepa War (1995)
- Nepalese Civil War (1996–2006)
- First Congo War (1996–1997)[232]
- Second Liberian Civil War (1999–2003)[319][320]
2000s
[edit]- War in Afghanistan (2001–2021)
- War in Darfur (2003–2020)[321]
- Iraq War (2003–2011)
- South Thailand insurgency (2004–present)
- Kivu conflict (2004–present)
- Insurgency in Paraguay (2005–present)[322]
- 2006 Lebanon War
- Mexican drug war (2006–present)
- 2007 Lebanon conflict (2007)
- Cambodian–Thai border dispute (2008–2011)
2010s
[edit]- Militias-Comando Vermelho conflict (2010–present)[323]
- Syrian civil war (2011–present)[324]
- Infighting in the Gulf Cartel (2011–present)
- Central African Republic Civil War (2012–present)
- 2013 Lahad Datu standoff
- War in Iraq (2013–2017)[325]
- Operation Madago Raya (2016–2022)[284]
- Battle of Marawi (2017)[326]
2020s
[edit]- Republican insurgency in Afghanistan (2021–present)
- 2021 Beirut clashes (2021)
- Myanmar Civil War (2021–present)
- Russian invasion of Ukraine (2022–present)[276]
- Sudanese civil war (2023–present)
- Israel–Hamas war (2023–present)[257][258]
- 2024 Israeli invasion of Lebanon (2024–present)
See also
[edit]- Adaptive Combat Rifle
- List of Colt AR-15 and M16 rifle variants
- List of AR platform cartridges
- Colt 9mm SMG
- Comparison of the AK-47 and M16
- Daewoo K2, Republic of Korea Armed Forces (South Korea) assault rifle
- Heckler & Koch HK416
- List of individual weapons of the U.S. armed forces
- M203 40 mm grenade launcher
- Norinco CQ, M16 clone developed by China
- Robinson Arms XCR
- Rubber duck (military)
- T65 assault rifle, AR-15 variant developed by ROC Army
- Winchester LMR
- Squad Designated Marksman Rifle
- SEAL Recon Rifle
- Marine Scout Sniper Rifle
- List of assault rifles
References
[edit]Notes
- ^ Later changed to titanium.[40]
- ^ Per Jane's International Defense Review: "The M14 is basically an improved M1 with a modified gas system and detachable 20-round magazine."[45]
- ^ Per Haas: "Nicknamed a 'Mattel toy'[59] because of its small caliber and lightweight design, the M16 became the standard service rifle for U.S. forces in Vietnam in 1967. The weapon was much lighter compared to the M14 it replaced, ultimately allowing Soldiers to carry more ammunition. The air-cooled, gas-operated, magazine-fed assault rifle was made of steel, aluminum alloy and composite plastics, truly cutting-edge for the time. Designed with full and semi-automatic capabilities, the weapon initially did not respond well to wet and dirty conditions, sometimes even jamming in combat. After a few minor modifications, the weapon gained in popularity among troops on the battlefield. Still in service today, the M16 is being phased out by the M4 carbine.
- ^ Per Gourley: "Colt literature notes that the fourth generation of the M16 "still represents the world standard by which all other weapons of this class are judged. Its combat-proven performance is verified by the fact that over eight million M16 weapon systems have been produced and placed in military service throughout the world."[63]
Per Valpolini: "Among western armies the M4 with its 356-mm-long barrel remains the benchmark type, although reports from the field have shown some criticism regarding its reliability in sand and dusty environments due to the direct impingement or 'gas-tube' system that tends to bring carbon blow-back into the chamber, while hot gases used to cycle the weapon generate heat problems."[64] - ^ This was dubbed the Ichord hearings after Missouri representative Richard Ichord, who championed Congress's inquiry into failures of the M-16 during the Vietnam War.[92]
- ^ Per Taylor "From an accuracy standpoint, there is no comparison between the M16 and AK. As long as the upper and lower receivers are tight and the trigger is halfway decent, the M16 is capable of MOA accuracy, whereas a typical AK will produce 5 to 6 MOA at best. And, if a free-floated barrel is incorporated to the M16's design, it becomes capable of 1⁄2-MOA or better, making it fully as accurate as a finely tuned heavy-barreled bolt-action precision rifle."[129]
- ^ The effective range of a firearm is the maximum distance at which a weapon may be expected to be accurate and achieve the desired effect.[132]
- ^ The horizontal range is the distance traveled by a bullet, fired from the rifle at a height of 1.6 meters and 0° elevation, until the bullet hits the ground.[133]
- ^ The lethal range is the maximum range of a small-arms projectile, while still maintaining the minimum energy required to put unprotected personnel out of action, which is generally believed to be 15 kilogram-meters (147 J / 108 ft.lbf).[134] This is the equivalent of the muzzle energy of a .22LR handgun.[135]
- ^ The maximum range of a small-arms projectile is attained at about 30° elevation. This maximum range is only of safety interest, not for combat firing.
- ^ Taken from the long-range dispersion firing test of the AK-47 assault rifle, U.S. Army Foreign Science and Technology Center. August 1969. "Just how mediocre? Two decades later, the U.S. Army would hold long-range firing tests with Kalashnikov variants, including three Soviet, two Chinese, and a Romanian model. At 300 meters, expert shooters at prone or bench rest positions had difficulty putting ten consecutive rounds on target. The testers then had the weapons fired from a cradle by a machine, which removed human error. At 300 meters, the ten-rounds group fired in this manner had a minimum dispersion of 17.5 inches, compared to the 12.6 inches with an M-16, the American assault rifle fielded in Vietnam as a reaction to the Kalashnikov's spread.[138]
- ^ Those who consider the M16 inhumane include; the International Committee of the Red Cross, Austria, Argentina, Belgium, Bolivia, Bulgaria, Burundi, Cambodia, Cyprus, Germany, Ireland, Latvia, Lithuania, Luxembourg, Mauritius, Mexico, Romania, Samoa, Slovenia, Sweden, Switzerland, etc.[146]
- ^ Per Surefire" "Standard MILSPEC USGI 30-Round Magazine Specs: Height: 7.1" and Weight-Empty: 3.9 ounces" [164]
- ^ NATO Stock Number of NSN 1005-01-591-5825, PN 1001V[173]
- ^ Per Svensk: "The foreign weapons kit was purchased in 1986 to give personnel in the Armed Forces the opportunity to get to know the weapons that usually show up in war and crisis situations."[270]
Citations
- ^ a b c Rottman (2011), p. 74.
- ^ National Rifle Association of America (2018), p. 1.
- ^ Chasmar (2016), p. 1; Ezell (2001), p. 1.
- ^ Hogg & Weeks (1985), pp. 195–196.
- ^ "Forgotten M16A1 Rifle Manufacturers: GM/Hydra-Matic and Harrington & Richardson – Part I". Small Arms Review. 15 December 2022. Retrieved 15 December 2022.
- ^ "Forgotten M16A1 Rifle Manufacturers – GM/Hydra-Matic and Harrington & Richardson – Part II". Small Arms Review. 20 December 2022. Retrieved 20 December 2022.
- ^ "U.S. Army places order for 24,000 M4A1 carbines with Remington". Military Times. 21 April 2012. Retrieved 21 April 2012.
- ^ "Colt M16 (Series)". Military Factory. 10 August 2023. Retrieved 10 August 2023.
- ^ "The Story Behind the Legendary M16 Rifle". The National Interest. 21 September 2021. Retrieved 21 September 2021.
- ^ "M16: The Weapon That Changed The World". Forces News. 21 October 2019. Retrieved 21 October 2019.
- ^ "M16: 4 Incredible Facts You Might Not Know". The National Interest. 22 December 2023. Retrieved 22 December 2023.
- ^ Department of the Army & Department of the Air Force (1991), p. 26.
- ^ Department of the Army & Department of the Air Force (1991), p. 26; McNab, Shumate & Gilliland (2021), p. 13.
- ^ Rottman (2011), p. 26.
- ^ a b Rottman (2011), p. 40.
- ^ Clark (2012), p. 1.
- ^ PEO Soldier (2011), p. 1.
- ^ Army Study Guide (2005), p. 1.
- ^ a b c d e Defense Technical Information Center (DTIC) (1968), p. 5.
- ^ Ezell et al. (1993), pp. 46–47; Urdang (1968), p. 801.
- ^ Osborne & Smith (1986), p. 1; Venola (2005), pp. 6–18.
- ^ a b Green & Stewart (2004), pp. 16–17.
- ^ a b c d e Colt, M16 5.56mm Rifle (2003).
- ^ Weapon Systems 2011 (2010).
- ^ a b Marine Corps Times, 26 October 2015, p.19.
- ^ South (2022), p. 1.
- ^ a b c d e f g h i Fallows (1981), pp. 56–65.
- ^ Ehrhart (2009), pp. 12–16; Rottman (2011), p. 6.
- ^ Schreier (2001), p. 1.
- ^ Rottman (2011), p. 6.
- ^ Thompson (2011), p. 35.
- ^ Canfield (2010), p. 1.
- ^ Hall (1952), p. 593.
- ^ Pacific War Historical Society (2010).
- ^ Appleman (1992), p. 20; Godfrey (2003), pp. 44–49; Gropman (1997), p. 25; Hughes & Johnson (2005), p. 47.
- ^ Harrison (1957), p. 15-17; Rose (2008), p. 4; Williams (2014), p. 1.
- ^ a b c Harrison (1957), p. 15-17.
- ^ a b Pikula (1998), pp. 36, 38.
- ^ Pikula (1998), pp. 27–29.
- ^ Pikula (1998), p. 38.
- ^ Pikula (1998), pp. 27–30.
- ^ Pikula (1998), pp. 36, 38".
- ^ Lewis (1962), p. 21; Pikula (1998), pp. 39–40.
- ^ a b c d e f g h Bruce (2002), pp. 20–27.
- ^ Jane's International Defense Review, April 2003, p.43.
- ^ Bruce (2002), pp. 20–27; Emerson (2006), p. 1.
- ^ Rottman (2011), p. 41.
- ^ Godfrey (2003), pp. 44–49.
- ^ Ehrhart (2009), p. 16-19.
- ^ Hutton (1970), pp. 32–41.
- ^ Ezell et al. (1993), pp. 46–47; Kern (2006), p. 10; Kokalis (2010), p. 1.
- ^ Rottman (2011), p. 8.
- ^ "The Contender: Winchester's .224 Light Rifle". American Rifleman. 19 February 2016. Retrieved 19 February 2016.
- ^ Bruce (2002), pp. 20–27; Fallows (1981), pp. 56–65; Kern (2006), p. 10.
- ^ a b Bruce (2002), pp. 20–27; Kern (2006), p. 10.
- ^ Fallows (1981), pp. 56–65; Morgan (1967), p. 4545.
- ^ Bruce (2002), pp. 20–27; Defense Technical Information Center (DTIC) (1968), p. 5; Kern (2006), p. 10; Kokalis (2010), p. 2.
- ^ Bruce (2002), pp. 20–27; Haas (2013), p. 67.
- ^ a b Coomer (1968), p. 25.
- ^ Defense Technical Information Center (DTIC) (1968), p. 5; Kern (2006), p. 10.
- ^ Arvidsson (2009), p. 8; Dougherty (2012), p. 26; Kern (2006), p. 10.
- ^ a b c Kern (2006), p. 10.
- ^ Gourley (2008), p. 75.
- ^ Valpolini (2012), p. 3.
- ^ Rose (2008), p. 372.
- ^ Rose (2008), pp. 372–373.
- ^ Bruce (2002), pp. 20–27; Rose (2008), p. 372.
- ^ AR15.com (2008).
- ^ Rose (2008), p. 373.
- ^ DARPA (1962).
- ^ Defense Technical Information Center (DTIC) (1968), p. 5; Sweeney & Ferguson (2004), p. 240.
- ^ Kokalis (2010), p. 2.
- ^ Bruce (2002), pp. 20–27; Rose (2008), pp. 380, 392.
- ^ Ezell et al. (1993), pp. 46–47; Rose (2008), p. 380.
- ^ Rottman (2011), p. 20.
- ^ Rottman (2011), p. 24.
- ^ a b The New York Times, At War Blog, November 12, 2009.
- ^ Bruce (2002), pp. 20–27; Fuerbringer (1967), p. 7.
- ^ Fuerbringer (1967), p. 7.
- ^ a b Ezell et al. (1993), pp. 46–47.
- ^ Eisner (1968), p. 4; Rottman (2011), p. 79.
- ^ Bruce (2002), pp. 20–27; Coomer (1968), p. 7.
- ^ a b c d e Ezell et al. (1993), pp. 746–762.
- ^ Urdang (1968), p. 801.
- ^ Watters (2004), p. 1.
- ^ Rosenthal (1988), p. 32.
- ^ HCAS Hearings (1969), p. 2326.
- ^ a b Armalite (2010).
- ^ Ehrhart (2009), p. 39.
- ^ Ehrhart (2009), p. 39-41.
- ^ Hastings (2018), p. 350-354.
- ^ Kahaner (2007), p. 236.
- ^ Coomer (1968), p. 10.
- ^ Hallock (1970), p. 18-33.
- ^ Ezell et al. (1993), pp. 46–47; Rottman (2011), p. 30.
- ^ Fenix Ammunition, History of the .223... (2021).
- ^ a b Armalite (2003).
- ^ a b c Defense Industry Daily (2011).
- ^ Jenkins & Lowrey (2004), p. 25.
- ^ Russell (2006), p. 25.
- ^ The Firearm Blog, 13 June 2009.
- ^ The Firearm Blog, 16 December 2009.
- ^ Picatinny Arsenal, 24 June 2010.
- ^ a b The New York Times, At War Blog, July 7, 2010.
- ^ Patent US2951424 (1956).
- ^ a b c Meehan (1985), p. 32.
- ^ Lambert (1965), p. 4.
- ^ AK-47 Technical Description (2010).
- ^ Cooke (2005), p. 1; Hickerson (1991), p. 9; Hogg & Weeks (1985), pp. 195–196; Simpson (2011), p. 1.
- ^ Cooke (2005), p. 1.
- ^ a b c d KS, Recoil Calculator.
- ^ Hickerson (1991), p. 9.
- ^ RBR, Early Colt 3× Scope (2020).
- ^ RBR, Late Colt 3× Scope (2020).
- ^ RBR, Delft 3x25 Scope (2020).
- ^ a b ARM, New Zeroing Procedures (2018).
- ^ a b c d Meehan (1985), pp. 50–52.
- ^ Fitchett (2023), p. 1; Meehan (1985), pp. 50–52.
- ^ Hickerson (1991), p. 145.
- ^ Meehan (1985), p. 53; Venola (2005), pp. 6–18.
- ^ The New Rifleman (2016).
- ^ Department of the Air Force (2004), p. 183; Henderson (2010), p. 1.
- ^ Defense Industry Daily (2005).
- ^ Trijicon® (2011).
- ^ Hopkins (2009), p. 1.
- ^ Dyer (2014), p. 122; Halberstadt (2008), p. 211–212; Newick (1989), pp. 26–27; Rottman (2011), p. 38.
- ^ Castaneda (2006), p. 2; Sweeney (2007), p. 5.
- ^ ADC, Avtomat Kalashnikov (1998).
- ^ Taylor (2009), p. 1.
- ^ Venola (2004), pp. 22–30.
- ^ Woods (2010), p. 135.
- ^ Joint Staff, J-7 (2005), p. 269.
- ^ Ingalls (1893), p. 7.
- ^ a b c d e f g Kjellgren (1970), pp. 40–44.
- ^ Winchester, X22LRSS1 (2012).
- ^ a b c Hartink (2004), p. 121-123.
- ^ Meehan (1985), p. 50.
- ^ Chivers (2010), p. 206.
- ^ Weaver (1990), p. 87.
- ^ a b Crawford (2003), p. 85.
- ^ Courtney & Courtney (2008), p. 4; McNab (2002), pp. 108–109; Rose (2008), pp. 375–376.
- ^ a b Fackler (2007), p. 1; Fackler (2010), p. 3.
- ^ a b c d e Defense Technical Information Center (DTIC) (1962), p. 73.
- ^ Slepyan & Ayzenberg-Stepanenko (1998), pp. 7.
- ^ Hogg & Weeks (1985), pp. 195–196; Prokosch (1995), p. 1.
- ^ a b Parks (2010), pp. 2.
- ^ Ehrhart (2009), pp. 25–26.
- ^ Ehrhart (2009), pp. 26–27; Fackler (2007), p. 1.
- ^ The New York Times, At War Blog, November 3, 2009.
- ^ a b Ehrhart (2009), pp. 27–28.
- ^ a b Colt, M4 5.56mm Carbine (2003).
- ^ Army Infantry Center (2003), p. 8; Dean & LaFontaine (2008), p. 3.
- ^ Army Infantry Center (2003), p. 8; Arvidsson (2012), p. 769.
- ^ Army Infantry Center (2003), p. 8.
- ^ Army Infantry Center (2003), p. 9.
- ^ Rose (2008), pp. 403–405.
- ^ a b Woods (2010), p. 35.
- ^ SCAS Hearings (2010).
- ^ Slowik (2012), p. 1.
- ^ The Firearm Blog, 16 June 2016.
- ^ The Firearm Blog, 23 July 2016.
- ^ a b c d Bartocci (2011), p. 1.
- ^ a b Ehrhart (2009), p. 39-44.
- ^ a b Crane (2010), p. 1.
- ^ Heckler & Koch (2013), p. 1.
- ^ Dockery (2007), pp. 125–126; Rottman (2011), pp. 35–36.
- ^ PEO Soldier (2009), p. 1; PEO Soldier (2010), p. 1.
- ^ PEO Soldier (2010), p. 1.
- ^ 'Soldier Systems Daily,'8 August 2016.
- ^ Sweeney (2007), p. 67.
- ^ Wieland (2011), p. 200.
- ^ Hansen (2005), pp. 28–32.
- ^ NATO Stock Number (2012).
- ^ Colt Canada (2012).
- ^ Sweeney (2007), pp. 255–256.
- ^ a b Walker (2012), p. 295.
- ^ Meehan (1985), p. 4.
- ^ Hickerson (1991), pp. 1–3.
- ^ a b Arvidsson (2009), p. 4.
- ^ a b Ehrhart (2009), pp. 22–24.
- ^ Arvidsson (2009), p. 6.
- ^ Watters (2000), p. 1.
- ^ Arvidsson (2008), p. 8.
- ^ Mecar Rifle Grenades (2006).
- ^ a b Special Operations.Com SAS Weapons (2000).
- ^ a b Retro Rifles (2020).
- ^ Meehan (1985), pp. 145–147.
- ^ DOD News, 1 March 2010.
- ^ DOD News, 1 July 2000.
- ^ Stevens & Ezell (1992), p. 343.
- ^ Rottman (2011), p. 36.
- ^ Rottman (2011), p. 37.
- ^ NATO Standardization Office (2020), pp. 100–125.
- ^ Miller (2004), pp. 280–281.
- ^ a b c d Venola (2005), pp. 6–18.
- ^ Hogg & Weeks (1985), p. 196.
- ^ Robinette (2017), p. 1.
- ^ AR15.com (2004).
- ^ YouTube, How 3-round Burst Works (2014).
- ^ National Guard Rifleman (2018).
- ^ VOA News (2020).
- ^ Department of Defense (1991), p. 144.
- ^ "The Story of the Government Profile Barrel". Everyday Marksman. 3 September 2018. Retrieved 17 July 2024.
- ^ Department of Defense (1991), p. 144; Venola (2005), pp. 6–18.
- ^ a b Hellenic Army (2002), pp. 46–62.
- ^ Defense Industry Daily (2008).
- ^ Marine Corps Times, February 16, 2015, p.4.
- ^ Marine Corps Times, 17 September 2015, p.7.
- ^ Military Times, 27 July 2015, p.3.
- ^ Marine Corps Times, 1 November 2015, p.5.
- ^ QORC, Colt Canada (2012).
- ^ Automatic Carbines (2008).
- ^ Edward C. Ezell (2021). "IDF Colt Carbine". Guns Magazine. Retrieved 25 August 2024.
- ^ S-5.56 rifle (2017).
- ^ Terab (2016).
- ^ M16 – WAC-47 (2017).
- ^ a b Colt, Customers (2003).
- ^ WION, What is Badri 313 unit? (2021).
- ^ a b c d e f g h i j k l m n o p q r s t SALW Guide (2021).
- ^ Exposición del Ejército Argentino (2005).
- ^ M16 (ARAŞDIRMA) (2020).
- ^ BICI, 23 November 2011, pp. 77, 236, 262.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao Southby-Tailyour (2003), p. 174.
- ^ Ministarstvo (2019).
- ^ a b Tropas e Armas (2021).
- ^ a b Small Arms Survey, Enemy Within, 2007, p.24.
- ^ Capie (2022), p. 2.
- ^ Small Arms Survey, Armed Violence in Burundi, 2007, p.204.
- ^ Berrigan & Ciarrocca (2017), p. 1; Wille (2011), p. 18.
- ^ Miller (2001), p. 357.
- ^ a b Small Arms Survey, The Central African Republic, 2007, p.318.
- ^ a b c d e f g h i Berrigan & Ciarrocca (2017), p. 1.
- ^ Southby-Tailyour (2003), p. 446.
- ^ Jane's Sentinel, Security Assessment – Southeast Asia, 2007, pp.146, 152.
- ^ Eesti Kaitsevägi, 4 April 2008, p.1.
- ^ Ministère des Armées, 13 July 2016, p.1.
- ^ Gander & Hogg (1995), p. 43.
- ^ BBC News, 18 May 2007, p.1.
- ^ Mehta (2017), p. 1.
- ^ Anders (2014), p. 15.
- ^ SAT Structure, 2013, p.1.
- ^ Google Accounts, World Inventory: Kuwait, 2018.
- ^ Google Accounts, World Inventory: Latvia, 2018.
- ^ McNab (2003), p. 174.
- ^ Lietuvos Kariuomenė, 2019.
- ^ Mauritius Sauvetage, 2012.
- ^ Small Arms Defense Journal, 16 October 2021, p.1.
- ^ CNN iReport, 16 October 2021, p.1.
- ^ Ashton (1998), p. 3298.
- ^ Sharma (2003), p. 1.
- ^ Small Arms Survey, Legacies of War in the Company of Peace, 2013, pp.5–7.
- ^ Bartocci & Stevens (2004), p. 24; Miller (2001), p. 357.
- ^ MBC News, 25 September 1996.
- ^ Yu Yong-won's Military World, 16 April 2013.
- ^ Abu Amer (2015), p. 1.
- ^ a b BBC News, 6 November 2006, p.1.
- ^ a b Worthy News, 6 January 2009, p.1.
- ^ a b Capie & New Zealand Peace and Disarmament Educational Trust (2004), p. 63–65.
- ^ Ellwood (2014), pp. 5, 19.
- ^ Montes (1970), p. 1.
- ^ Google Accounts, World Inventory: Peru, 2018.
- ^ MB (2021).
- ^ Southby-Tailyour (2003), p. 174; Berrigan & Ciarrocca (2017), p. 1.
- ^ https://newsinfo.inquirer.net/40979/bureau-gets-new-guns-to-beef-up-jail-security
- ^ Operacional, January 3, 2015.
- ^ Binnie & de Cherisey (2017), pp. 3–5.
- ^ a b Google Accounts, World Inventory: Sierra Leone, 2018.
- ^ Knysna-Plett Herald, 6 October 2016.
- ^ Svensk (2016), p. 1.
- ^ "A few days ago about 10 Maghawir Thowra fighters defected to the SyAA". Twitter. Retrieved 30 November 2020.
- ^ SAA commando armed with an M16 rifle during training
- ^ 5th Div. M16
- ^ Military Factory, Colt M16A2 Assault Rifle (2014).
- ^ Diemaco C7A1 (2022).
- ^ a b The Armourers Bench, January 29, 2023.
- ^ McNab 2003, p. 243.
- ^ GOV.UK News August 7, 2012.
- ^ Ripley (2016), p. 1.
- ^ Army.mil, 24 June 2010.
- ^ Ezell (1988), pp. 152–153.
- ^ a b Rottman (2011), p. 34.
- ^ Small Arms Survey, Waning Cohesion, 2015, p.201.
- ^ a b Aliansyah (2016), p. 1.
- ^ Kabarpapua.co, September 7, 2021.
- ^ CTE, ISIS Weapons Use, April 26, 2018.
- ^ NBC News, September 1, 2015.
- ^ Maitem (2020), p. 1.
- ^ Gonzales (2018), p. 1.
- ^ Meydannet.com, PKK'lı terörist, August 7, 2021.
- ^ T.C. İçişleri Bakanlığı,Siirt'te PKK'lı Teröristlere August 7, 2021.
- ^ https://x.com/JulianRoepcke/status/441097312106844160
- ^ Minda News, Army destroys firearms, 23 August 2018.
- ^ Kalinaw News, NPA killed, 11 July 2020.
- ^ Philippine News Agency, Soldiers Recover NPA weapons, 20 September 2020.
- ^ "Use of the M-16 Rifle by Mujahideen during the Soviet-Afghan War 1979-1989". 5 March 2023.
- ^ LWJ, Afghan National Security Forces Order of Battle, (2011).
- ^ Diggerhistory, Australian weapons, Viet Nam and since, (2002).
- ^ a b Moreno (2019), p. 1.
- ^ medcom.id, Mantan Kombatan GAM, 4 January 2019.
- ^ RHKR, Equipment - Weapons, 16 June 2021.
- ^ Conboy & McCouaig (1989), p. 15.
- ^ The Firearm Blog, 18 August 2015.
- ^ An Sionnach Fionn, Reorganisation Of The IRA, July 9, 2015.
- ^ a b Moorcraft & McLaughlin (2008), p. 92.
- ^ Walter (2006), pp. 320–321.
- ^ Laemlein (2018), p. 1.
- ^ Small Arms Survey, Waning Cohesion, 2015, p.201.
- ^ Yates (1988), p. 123.
- ^ An Sionnach Fionn, Reorganisation Of The IRA, July 9, 2015.
- ^ Conboy & Bowra (1989), pp. 18, 41–42.
- ^ Reyeg & Marsh (2011), p. 114.
- ^ Schroeder (2013), p. 303.
- ^ Fuentes (2013), p. 1.
- ^ Sicard (1982), pp. 25–30.
- ^ 过期杂志阅读平台_参考网 (2014).
- ^ M-16, 80-е. 2016.
- ^ Huband (1998), p. 62.
- ^ UN Office for Disarmament Affairs, Assistance to Liberia, 2015.
- ^ Human Rights Watch, Liberia at a Crossroads, 2005.
- ^ Berman & Racovita (2015), pp. 69–70.
- ^ ABC Color (2019).
- ^ The Firearm Blog, 4 October 2017.
- ^ Conflict Armament Research 2014.
- ^ Conflict Armament Research 2014, pp. 12–13.
- ^ The Firearm Blog, 22 June 2017.
Sources
- "EPP mata a dos policías al atacar una subcomisaría de Horqueta, anoche". ABC Color (in Spanish). 3 June 2019. Archived from the original on 6 October 2022. Retrieved 7 May 2021.
- Abu Amer, Adnan (10 May 2015). "Security services drain Palestine's budget". Al-Monitor. p. 1. Archived from the original on 5 May 2017. Retrieved 8 June 2017.
- "AK-47 Technical Description – Manual". Scribd.com. 30 September 2010. Archived from the original on 28 March 2012. Retrieved 23 August 2012.
- Anders, Holger (June 2014). Identifier les sources d'approvisionnement: Les munitions de petit calibre en Côte d'Ivoire (PDF) (in French). Small Arms Survey and United Nations Operation in Côte d'Ivoire. p. 15. ISBN 978-2-940-548-05-7. Archived from the original (PDF) on 9 October 2018. Retrieved 5 September 2018.
- "Avtomat Kalashnikov". Alpha Disaster Contingencies. Online SURVIVAL Magazine. March 1998. Archived from the original on 13 May 2012. Retrieved 3 April 2012.
- Aliansyah, Muhamad Agil (19 July 2016). "Kronologi terduga Santoso ditembak mati di Poso". merdeka.com (in Indonesian). p. 1. Archived from the original on 21 June 2023. Retrieved 22 May 2021.
- "The Reorganisation Of The IRA In The Early 1970s". An Sionnach Fionn. 9 July 2015. Archived from the original on 30 October 2019. Retrieved 25 July 2015.
- Appleman, Roy Edgar (1992). South to the Naktong – North to the Yalu (June-November 1950) (PDF). Washington, D.C.: Center of Military History, United States Army. ISBN 978-0-16-035958-3. OCLC 28086548. Archived (PDF) from the original on 11 July 2022. Retrieved 8 February 2024.
- "Functional Description: Three-Round Burst". AR15.com. 28 May 2004. Archived from the original on 3 February 2012. Retrieved 6 January 2012.
- "Ammo Oracle". AR15.com. 3 October 2008. Archived from the original on 7 July 2011. Retrieved 27 September 2011.
- "ARMALITE TECHNICAL NOTE 48: The Effects of Barrel Design and Heat on Reliability" (PDF). Armalite. 24 August 2003. Archived from the original (PDF) on 11 November 2011.
- "ARMALITE TECHNICAL NOTE 54: DIRECT IMPINGEMENT VERSUS PISTON DRIVE" (PDF). Armalite. 3 July 2010. Archived from the original (PDF) on 5 September 2012.
- "New Zeroing Procedures" (PDF). Army Reserve Marksman. 3 February 2018. Archived (PDF) from the original on 8 February 2022. Retrieved 8 February 2022.
- "M16A4s in Ukraine". The Armourers Bench. 29 January 2023. Archived from the original on 22 May 2023. Retrieved 6 February 2023.
- Army Infantry Center (31 July 2003). "Project Manager Soldier Weapons Assessment Team Report 6-03" (PDF). U.S. Army. p. 1-10. Archived from the original (PDF) on 14 July 2011. Retrieved 8 October 2011.
- "M-16 Rifle Fact File for the United States Army". army.mil. 24 June 2010. Archived from the original on 25 August 2010. Retrieved 22 August 2010.
- Army Study Guide (2005). "M16/A2 – 5.56 mm Semiautomatic Rifle". QuinStreet, Inc. Archived from the original on 6 July 2014. Retrieved 3 July 2014.
- Arvidsson, Per (6 January 2012). "Is there a Problem with the Lethality of the 5.56 NATO Caliber?". Small Arms Defense Journal. 3 (1): 769. Archived from the original on 12 October 2013. Retrieved 20 November 2015.
- Arvidsson, Per G. (29 December 2009). "Weapons & Sensors" (PDF). NATO Army Armaments Group. pp. 1–20. Archived from the original (PDF) on 24 September 2015.
- Arvidsson, Per G. (29 December 2008). "NATO Infantry Weapons Standardization" (PDF). NDIA Conference. Archived from the original (PDF) on 1 December 2012.
- Ashton, William (1 March 1998). "Burma receives advances from its silent suitors in Singapore". Jane's Intelligence Review. Vol. 10, no. 3. Croydon, UK: Jane's Information Group. p. 3298. ISSN 2048-349X. Archived from the original on 23 March 2021. Retrieved 24 February 2024.
- "Canadian American Strategic Review". Automatic Carbines. 5 September 2008. Archived from the original on 5 September 2008. Retrieved 23 August 2009.
- Bartocci, Christopher R. (20 July 2011). "Feeding the Modern Semi-Automatic Rifle". American Rifleman. Fairfax, VA: National Rifle Association. p. 1. Archived from the original on 14 April 2013. Retrieved 23 August 2012.
- Bartocci, Christopher R.; Stevens, R. Blake (2004). Black Rifle II: The M16 Into the 21st Century. Cobourg, ON: Collector Grade Publications. pp. 1–375. ISBN 978-0-88935-348-0. OCLC 55489367. Archived from the original on 15 February 2024. Retrieved 15 January 2009.
- "In pictures: Gaza offensive". BBC News. 6 November 2006. Archived from the original on 20 March 2018. Retrieved 20 March 2018.
- "First steps to arming Iraq's soldiers". BBC News. 18 May 2007. Archived from the original on 11 November 2012. Retrieved 12 May 2010.
- Berman, E.G.; Racovita, M. (2015). Under Attack and Above Scrutiny? Arms and Ammunition Diversion from Peacekeepers in Sudan and South Sudan, 2002–14. Working paper (Small Arms Survey). Cambridge, UK: Cambridge University Press. pp. 69–70. ISBN 978-2-940548-11-8. OCLC 1248444343. Archived from the original on 25 February 2024. Retrieved 7 February 2019.
- Berrigan, Frida & Ciarrocca, Michelle (2017). "Report: Profiling the Small Arms Industry - World Policy Institute - Research Project". World Policy Institute. Archived from the original on 11 October 2017. Retrieved 12 February 2018.
- "Report of the Bahrain Independent Commission of Inquiry" (PDF). Bahrain Independent Commission of Inquiry. 23 November 2011. pp. 77, 236, 262. Archived from the original (PDF) on 19 December 2011. Retrieved 26 December 2011.
- Binnie, Jeremy; de Cherisey, Erwan (2017). "New-model African Armies" (PDF). Jane's. pp. 3–5. Archived from the original (PDF) on 22 June 2017.
- Bruce, Robert (April 2002). "M14 vs. M16 in Vietnam". Small Arms Review. 5 (7): 20–27. Archived from the original on 22 April 2016. Retrieved 3 June 2019.
- Canfield, Bruce (November 2010). "Arms of the Chosin Few". American Rifleman. Archived from the original on 5 December 2013. Retrieved 23 November 2011.
- Capie, David H. (2022). Small Arms Production and Transfers in Southeast Asia. ANU Open Research. Canberra, ACT: The Australian National University. p. 180. Archived from the original on 22 February 2024. Retrieved 27 October 2022.
- Capie, David H.; New Zealand Peace and Disarmament Educational Trust (2004). Under the Gun: The Small Arms Challenge in the Pacific. Wellington, NZ: Victoria University Press. pp. 63–65. ISBN 978-0-86473-453-2. OCLC 52808783. Archived from the original on 26 November 2023. Retrieved 22 February 2024.
- Castaneda, Antonio (29 July 2006). "Marine Sniper Metes Out Swift Death in Iraq's Most Dangerous Neighborhood". USA Today: 2. Archived from the original on 24 May 2019. Retrieved 20 November 2015.
- Chasmar, Jessica (31 May 2016). "Jim Sullivan, AR-15 designer, accuses HBO of deceptively editing interview". The Washington Times. Archived from the original on 3 August 2020. Retrieved 2 October 2018.
- Chivers, C.H. (3 November 2009). "The M-16 Argument Heats Up, Again, 2". The New York Times, At War Blog. p. 1. Archived from the original on 10 February 2023. Retrieved 22 September 2013.
- Chivers, C.H. (12 November 2009). "How Reliable Is the M-16 Rifle?". The New York Times, At War Blog. p. 1. Archived from the original on 16 July 2022. Retrieved 12 January 2011.
- Chivers, C.H. (7 July 2010). "Examining the Complaints About American Rifle Reliability". The New York Times, At War Blog. p. 1. Archived from the original on 12 March 2023. Retrieved 22 September 2013.
- Chivers, C.J. (2010). The Gun. New York, NY: Simon & Schuster. p. 206. ISBN 978-0-7432-7076-2. LCCN 2010020459. OCLC 535493119. Retrieved 22 September 2013.
- Clark, Philip (2012). "M855A1 Enhanced Performance Round (EPR), LTC Philip Clark, Product Manager Small Caliber Ammunition, April 2012" (PDF). Office of the Project Manager for Maneuver Ammunition Systems. Archived from the original (PDF) on 25 January 2017. Retrieved 25 February 2017.
- "Recession? What Recession? – CNN iReport". CNN. Archived from the original on 1 January 2016.
- "Customers". Colt.com. 2 June 2003. Archived from the original on 2 September 2011. Retrieved 8 October 2011.
{{cite web}}
: CS1 maint: unfit URL (link) - "M16 5.56mm Rifle". Colt.com. 2 June 2003. Archived from the original on 2 June 2003. Retrieved 8 October 2011.
{{cite web}}
: CS1 maint: unfit URL (link) - "M4 5.56mm Carbine". Colt.com. 2 June 2003. Archived from the original on 16 June 2011. Retrieved 8 October 2011.
{{cite web}}
: CS1 maint: unfit URL (link) - "Colt Canada Corporation". 2012. Archived from the original on 22 September 2013. Retrieved 6 June 2013.
- Conboy, Kenneth; Bowra, Kenneth (1989). The War in Cambodia 1970–75. Men-at-Arms 209. London, UK: Osprey Publishing. pp. 18, 41–42. ISBN 978-0-85045-851-0. OCLC 60062267. Archived from the original on 25 February 2024. Retrieved 28 August 2017.
- Conboy, Kenneth J.; McCouaig, Simon (1989). The War in Laos 1960–75. Men-at-Arms 217. Osprey Publishing. p. 15. ISBN 978-0-85045-938-8. OCLC 21180706. Archived from the original on 25 February 2024. Retrieved 25 February 2024.
- Conflict Armament Research (September 2014). "Islamic State Weapons in Iraq and Syria: Analysis of weapons and ammunition captured from Islamic State forces in Iraq and Syria" (PDF). Conflict Armament Research. p. 7. Archived (PDF) from the original on 26 August 2018. Retrieved 31 August 2018.
- Cooke, Gary W. (3 May 2005). "5.56mm (5.56 x 45 mm) Ammunition". Gary's Place. Archived from the original on 19 August 2022. Retrieved 18 February 2022.
- Coomer, William O., ed. (1 June 1968). Report of the M16 Review Panel (PDF). M16 Surveys in the Republic of Vietnam. Washington DC: Office of the Deputy Chief of Staff for Research, Development, Acquisition. pp. 1–130. Archived (PDF) from the original on 4 March 2016. Retrieved 3 June 2019.
- Courtney, Amy & Courtney, Michael (2008). "Scientific Evidence for Hydrostatic Shock". p. 4. arXiv:0803.3051 [physics.med-ph].
- Crane, David (3 December 2010). "SureFire "Quad-Stack" AR Rifle Magazines". Defense Review. Archived from the original on 21 March 2015.
- Crawford, Steve (2003). Twenty-first Century Small Arms: The World's Great Infantry Weapons (pdf). Twenty First Series. St. Paul, MN: MBI Publishing Company LLC. p. 85. ISBN 978-0-7603-1503-3. LCCN 2003054048. OCLC 52301802. Retrieved 25 March 2021.
- "Terrorist Group: ISIS Weapons Use". counterterrorismethics.com. 26 April 2018. Archived from the original on 26 April 2018. Retrieved 25 February 2019.
- "RESEARCH & DEVELOPMENT FIELD UNIT. Advanced Research Projects Agency. REPORT OF TASK NO. 13A. TEST OF ARMALITE RIFLE. AR-15 (U)" (PDF). Assets.documentcloud.org. 31 July 1962. Archived (PDF) from the original on 17 May 2023. Retrieved 16 January 2018.
- Dean, Glenn; LaFontaine, David (2008). "Small Caliber Lethality: 5.56 Performance in Close Quarters Battle" (PDF). WSTIAC Quarterly. 8 (1): 3. Archived from the original (PDF) on 12 February 2012.
- "Marines Pleased, So USMC Orders $660M More ACOG Rifle Scopes". Defense Industry Daily. 15 August 2005. Archived from the original on 22 November 2012. Retrieved 9 February 2012.
- "US Navy, Marines Buy M-16 Rifles". Defense Industry Daily. 2 January 2008. Archived from the original on 5 January 2008. Retrieved 3 January 2008.
- "The USA's M4 Carbine Controversy". Defense Industry Daily. 21 November 2011. Archived from the original on 13 July 2007. Retrieved 24 December 2011.
- Defense Technical Information Center (DTIC) (2 December 1962). Rifle Evaluation Study (PDF). Department of the Army. p. 1-80. Archived (PDF) from the original on 12 February 2024. Retrieved 12 February 2024.
- Defense Technical Information Center (DTIC) (1 June 1968). Report of the M16 Rifle Review Panel (PDF). Department of the Army. pp. 1–62. Archived (PDF) from the original on 12 February 2024. Retrieved 12 February 2024.
- Department of the Air Force (February 2004). "Fiscal Year (FY) 2005 BUdget Estimates: Procurement of Ammunition" (PDF). United States Department of the Air Force. p. 183. Archived from the original (PDF) on 22 September 2013. Retrieved 13 July 2014.
- Department of the Army & Department of the Air Force (1991). US Army M16A2, M4, and M4A1 Technical Manual (pdf). Washington, DC: Department of Defense. p. 26. TH 9-1005-319-23&P.
- "Українські сили використовують канадські гвинтівки "Diemaco C7A1"". Мілітарний (in Ukrainian). 2 October 2022. Archived from the original on 30 October 2022. Retrieved 11 November 2022.
- "Australian weapons, Viet Nam and since". Diggerhistory.info. 11 November 2002. Archived from the original on 11 August 2010. Retrieved 22 August 2010.
- "Defense.gov Photos : News Photo". Defense.gov. 1 March 2010. Archived from the original on 1 March 2010.
- "Sgt. Zachary Sarver and Spc. Gary Vandenbos negotiate with a role-playing inebriated woodsman during Exercise Peaceshield 2000". Defense.gov. 2000. Archived from the original on 9 November 2004. Retrieved 9 November 2004.
- Department of Defense (1991). Annual Department of Defense Bibliography of Logistics Studies and Related Documents. United States Army Logistics Management Center. Archived from the original on 19 February 2024. Retrieved 19 February 2024.
- Dockery, Kevin (2007). Future Weapons. New York, NY: Berkley Caliber. ISBN 978-0-425-21215-8. OCLC 71812826. Archived from the original on 15 February 2024. Retrieved 15 February 2012.
- Dougherty, Martin J. (2012). Small Arms. Modern Weapons: Compared and Contrasted. Rosen Publishing Group. ISBN 978-1-4488-9245-7. LCCN 2012034788. OCLC 808930450. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
- Dyer, Lucas A. (2014). A Battle Won by Handshakes: The Story of Alpha Company 1/5. Bloomington, IN: iUniverse LLC. p. 122. ISBN 978-1-4917-3201-4. OCLC 880966673. Retrieved 11 February 2018.
- "Eesti Kaitsevägi – Tehnika – Automaat M-16 A1". Mil.ee. 4 April 2008. Archived from the original on 3 June 2008. Retrieved 8 September 2008.
{{cite web}}
: CS1 maint: unfit URL (link) - Ehrhart, Thomas P. (30 November 2009). "Increasing Small Arms Lethality in Afghanistan: Taking Back the Infantry Half-Kilometer" (PDF). School of Advanced Military Studies. p. 1-76. Archived (PDF) from the original on 19 July 2013.
- Eisner, Will (28 June 1968). The M16A1 Rifle: Operation and Preventive Maintenance. [Washington, D.C.]: U.S. Army. pp. 1–32. OCLC 311565434.
- Ellwood, Justin (December 2014). "Indo-Pacific Strategic Papers: Understanding the neighbourhood: Bougainville's referendum for independence" (PDF). Australian Department of Defense. pp. 5, 19. Archived (PDF) from the original on 24 March 2018.
- Emerson, Lee (10 October 2006). "M14 Rifle History and Development" (PDF). Archived from the original (PDF) on 15 December 2017. Retrieved 3 June 2019.
- "Exposición del Ejército Argentino en Palermo, Buenos Aires- Mayo de 2005". Archived from the original on 22 January 2009. Retrieved 27 September 2011..
- Ezell, Edward Clinton (1988). Personal firepower. The Illustrated history of the Vietnam War 15. Toronto, ON: Bantam Books. pp. 152–153. ISBN 978-0-553-34549-0. OCLC 18136888.
- Ezell, Edward Clinton; Pegg, Thomas M.; Smith, Walter H.B. & Smith, Joseph E. (1993) [1983]. Small Arms of the World: A Basic Manual of Small Arms (12th ed.). Harrisburg, PA: Stackpole Books. pp. 46–47. ISBN 978-0-88029-601-4. OCLC 624461256. Retrieved 4 February 2022.
- Ezell, Virginia Hart (November 2001). "Focus on Basics, Urges Small Arms Designer". National Defense. Archived from the original on 7 December 2010.
- Fackler, Martin L. (5 December 2010). "The Effects of Small Arms on the Human Body" (PDF). pp. 1–8. Archived from the original (PDF) on 7 June 2016. Retrieved 27 September 2011.
- Fackler, Martin L. (December 2007). "Patterns of Military Rifle Bullets". Ciar.org. Archived from the original on 20 November 2012. Retrieved 27 September 2011.
- Fallows, James (June 1981). "M-16: A Bureaucratic Horror Story" (PDF). The Atlantic Monthly. 247 (6). The Atlantic Monthly Group: 56–65. ISSN 1072-7825. OCLC 936540106. Archived (PDF) from the original on 22 February 2023. Retrieved 1 April 2019.
- "History of the .223 Remington Cartridge". Fenix Ammunition. 2021. Archived from the original on 25 April 2021. Retrieved 25 April 2021.
- "Brownells shipping M16 magazines with anti-tilt follower to military". The Firearm Blog. 13 June 2009. Archived from the original on 21 September 2013.
- "New US Army M16 "Tan" Magazine". The Firearm Blog. 16 December 2009. Archived from the original on 21 September 2013.
- "DEVASTATING New M80A1 7.62mm Round". The Firearm Blog. 16 December 2009. Archived from the original on 22 October 2018.
- "New Zealand Army Selects LMT To Replace Steyr AUG". The Firearm Blog. 18 August 2015. Archived from the original on 24 January 2018.
- "Taking a Look Inside the Army's DEVASTATING New M80A1 7.62mm Round". The Firearm Blog. 23 July 2016. Archived from the original on 22 October 2018.
- "Arming the Maute Group in Marawi City". The Firearm Blog. 22 June 2017. Archived from the original on 14 November 2017.
- "Recent Images of Rio's Drug War". The Firearm Blog. 4 October 2017. Archived from the original on 13 February 2023.
- Fitchett, Bev (7 November 2023). "MAl Standard Sights And Zeroing". Bev Fitchett's Guns. Archived from the original on 20 October 2021. Retrieved 7 November 2023.
- Fuentes, Jorge (14 January 2013). "El atentado contra Pinochet que casi cambia la historia de Chile". Guiteca. p. 1. Archived from the original on 20 May 2023. Retrieved 7 October 2021.
- Fuerbringer, Otto, ed. (9 June 1967). "Defense: Under Fire" (html). Time. Vol. 89, no. 23. New York, NY: Time Inc. p. 7. ISSN 0040-781X. OCLC 1311479. Retrieved 28 September 2009.
- Gander, Terry J.; Hogg, Ian Vernon (1995). Jane's infantry weapons 1995-96. Surrey, UK: Jane's Information Group Ltd. ISBN 978-0-7106-1241-0. OCLC 1158841906. Retrieved 30 January 2019.
- Godfrey, Frederick V. (2003). "The Logistics of Invasion" (PDF). Army Logistician. 35 (6). Army Logistics Management Command: 44–49. PB 700-03-6. Archived (PDF) from the original on 26 October 2016. Retrieved 23 November 2011.
- Gonzales, Cathrine (18 December 2018). "PNP, AFP to probe possible military weapons theft". INQUIRER.net. p. 1. Archived from the original on 20 June 2023. Retrieved 20 June 2023.
- "World Inventory: Kuwait". Google Accounts. Retrieved 15 January 2018.[permanent dead link]
- "World Inventory: Latvia". Google Accounts. Archived from the original on 24 November 2016. Retrieved 15 January 2018.
- "World Inventory: Peru". Google Accounts. Archived from the original on 29 May 2016. Retrieved 15 January 2018.
- "World Inventory: Sierra Leone". Google Accounts. Archived from the original on 24 November 2016. Retrieved 15 January 2018.
- Gourley, Scott R. (July 2008). "Soldier Armed: M16A4 Rifle" (PDF). Army Magazine. Association of the United States Army: 75–76. Archived from the original (PDF) on 18 February 2011. Retrieved 1 January 2018.
- "Royal Military Police train for close protection". GOV.UK. 7 August 2012. Archived from the original on 19 October 2015. Retrieved 20 November 2015.
- Green, Michael & Stewart, Greg (2004). Weapons of the Modern Marines (pdf). Battle gear. St. Paul, MN: MBI Publishing Company. pp. 16–17. ISBN 978-0-7603-1697-9. LCCN 2003065746. OCLC 53231342. Retrieved 13 March 2020.
- Gropman, Alan L. (1997). The big 'L': American logistics in World War II. Washington, DC: National Defense University Press. ISBN 1-57906-036-6. OCLC 645868419. Archived from the original on 8 February 2024. Retrieved 24 December 2011.
- Haas, Darrin (2013). "The Pride of the Guard". GX: The Guard Experience. 10 (3). United States Army National Guard: 67. Archived from the original on 28 September 2013.
- Halberstadt, Hans (2008). Trigger Men: Shadow Team, Spider-Man, the Magnificent Bastards, and the American Combat Sniper. New York, NY: St. Martin's Press. pp. 211–212. ISBN 978-0-312-35456-5. LCCN 2007047207. OCLC 1151432332.
- Hall, Donald L. (March 1952). "An Effectiveness Study of the Infantry Rifle" (PDF). Ballistic Research Laboratories. Aberdeen, MD: U.S. Army. p. 593. Archived from the original (PDF) on 24 September 2015.
- Hallock, Richard R. (16 March 1970). "M16 Case Study" (PDF). Pogo Archives.org. pp. 1–168. Archived from the original (PDF) on 6 September 2015. Retrieved 6 September 2015.
- Hansen, Denny (2005). "Flash Hiders, is there a difference?". SWAT. 24 (2): 28–32. ISSN 1062-2365. OCLC 25541930.
- Harrison, E. H. (June 1957). "New Service Rifle" (PDF). Archived from the original (PDF) on 7 November 2015.
- Hartink, A.E. (2004). The Complete Encyclopedia of Automatic Army Rifles (pdf) (2nd ed.). Lisse, NL: Rebo International b.v. pp. 121–123. ISBN 978-90-366-1489-4. OCLC 1244584865. Retrieved 20 November 2015.
- Hastings, Max (2018). Vietnam, An Epic Tragedy 1945 - 1975. London, UK: William Collins. pp. 350–354. ISBN 978-0-00-813298-9. OCLC 1124412935.
- Hearings, Reports and Prints of the House Committee on Armed Services. U.S. Government Printing Office. 1969. Retrieved 8 February 2018.
- Heckler & Koch (3 December 2013). "Heckler Koch HK416 Enhanced Carbine 556x45mm NATO". Archived from the original on 3 December 2013. Retrieved 9 September 2017.
- Hellenic Army (December 2002). Hellenic Army Field Manual. Hellenic Army General Staff. pp. 46–62.
- Henderson, Ronald (11 December 2010). "Company's Successful M68 Close Combat Optic Standard Issue Equipment For US Forces Since 1997". Armed Forces International. Archived from the original on 9 December 2011. Retrieved 9 February 2012.
- Hickerson, Patricia (June 1991). Technical Manual Unit and Direct Support Maintenance Manual, Rifle, 5.56 mm, M16 Rifle, 5.56 mm, M16A1 (pdf). Washington, DC: U.S. Army. p. 9. TM 9-1005-249-23&P. Retrieved 13 July 2014.
- Hogg, Ian Vernon & Weeks, John S. (1985) [1973]. Military Small Arms of The 20th Century: A Comprehensive Illustrated Encyclopedia of the World's Small-Calibre Firearms (pdf) (5th ed.). Northfield, IL: DBI Books. pp. 195–196. ISBN 978-0-910676-87-8. OCLC 12230421.
- Hopkins, Cameron (24 April 2009). "Colt's M4A1 5.56mm Carbine". Tactical-Life.com. Archived from the original on 25 June 2012. Retrieved 3 April 2012.
- Huband, Mark (1998). The Liberian Civil War. London, UK: F. Cass. p. 62. ISBN 978-0-7146-4340-3. OCLC 37640571.
- Hughes, Matthew & Johnson, Gaynor (2005). Fanaticism and Conflict in the Modern Age. Cass series--Military History and Policy. Frank Cass. p. 47. doi:10.4324/9780203320587. ISBN 978-0-7146-8584-7. OCLC 57239474. Archived from the original on 8 February 2024. Retrieved 23 August 2012.
- "Liberia at a Crossroads:Human Rights Challenges for the New Government, Reintegration of Ex-Combatants". Human Rights Watch. September 2005. Archived from the original on 11 June 2022. Retrieved 10 June 2022.
- Hutton, Robert, ed. (1970). "The .223". Guns & Ammo 1971 Annual. Los Angeles, CA: Petersen Publishing Company. pp. 32–41. OCLC 46748623. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
- Ingalls, James Monroe (1893). Ballistics (pdf). Washington, DC: Government Printing Office. p. 7. Retrieved 11 February 2024.
- "The M14". Jane's International Defense Review. 36 (4): 43. 2003. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
- "Security Assessment – Southeast Asia". Jane's Sentinel (20). Janes: 146, 152. 2007. ISSN 2050-2478.
- Jenkins, Shawn T. & Lowrey, Douglas S. (December 2004). "A COMPARATIVE ANALYSIS OF CURRENT AND PLANNED SMALL ARMS WEAPON SYSTEMS" (PDF). US NAVAL POSTGRADUATE SCHOOL. pp. 1–75. Archived from the original on 22 July 2013. Retrieved 20 November 2015.
- Joint Staff, J-7 (2005). Department of Defense Dictionary of Military and Associated Terms. Includes US Acronyms and Abbreviations and NATO Terms (pdf). Washington, DC: United States Joint Chiefs of Staff. p. 269. OCLC 31863849. DTIC ADA349890. Retrieved 11 February 2024.
{{cite book}}
: CS1 maint: numeric names: authors list (link) - "5 Senjata Api Laras Panjang Ditemukan dari 2 Orang Kelompok Teroris Papua". kabarpapua.co (in Indonesian). 7 September 2021. Archived from the original on 20 June 2023. Retrieved 3 April 2022.
- Kahaner, Larry (2007). AK-47: The Weapon that Changed the Face of War. Wiley. p. 236. ISBN 978-0-470-16880-6.
- "NPA killed, high-powered firearms captured in ZamBo Norte clash". Kalinaw News. 11 July 2020. Archived from the original on 22 October 2020. Retrieved 20 November 2020.
- "Recoil Calculator". Karl's Soapbox. Archived from the original on 17 October 2018. Retrieved 3 June 2019.
- Kern, Danford Allan (2006). "The influence of organizational culture on the acquisition of the m16 rifle" (PDF). m-14parts.com. Fort Leavenworth, KS: US Army Command and General Staff College. Archived from the original (PDF) on 5 November 2013.
- Kjellgren, G. L. M. (March 1970). "The Practical Range of Small Arms" (PDF). The American Rifleman: 40–44. Archived (PDF) from the original on 5 March 2015. Retrieved 20 November 2015.
- "History 'lesson' of note at Arts Festival". Dammam, ZA: Knysna-Plett Herald. 6 October 2016. Archived from the original on 22 December 2016. Retrieved 22 December 2016.
- Kokalis, Peter G. (2010). "Retro AR-15" (PDF). Nodakspud.com. pp. 1–5. Archived from the original (PDF) on 29 October 2013.
- Lambert, J.C. (7 May 1965). U.S.Rrifle, 7.62mm, M14 and M14E2 (pdf). Washington, DC: U.S. Army. p. 4. FM 23-8. Retrieved 18 April 2015.
- Laemlein, Tom (30 January 2018). "Guns of the Tet Offensive". American Rifleman. Fairfax, VA: National Rifle Association. p. 1. Archived from the original on 1 March 2018. Retrieved 3 August 2018.
- Lewis, Jack (1962). "The M-14: Boon or Blunder". Gun World. 3 (4). Capistrano Beach, CA: Gallant Pub. Co. OCLC 60617000.
- "Lietuvos kariuomenė :: Ginkluotė ir karinė technika »Automatiniai šautuvai» Automatinis šautuvas M-16" (in Lithuanian). Kariuomene.kam.lt. 17 April 2009. Archived from the original on 28 March 2010. Retrieved 22 August 2010.
- "Afghan National Security Forces Order of Battle" (PDF). Long War Journal. Archived (PDF) from the original on 7 June 2012. Retrieved 3 November 2011.
- "DSX silahlanmasında ABŞ istehsalı tüfəng". M16 (ARAŞDIRMA). 30 June 2020. Archived from the original on 26 July 2020. Retrieved 19 February 2024.
- "Советские солдаты в Афгане с трофейными M-16, 80-е." (in Russian). 27 November 2016. Archived from the original on 29 November 2016. Retrieved 11 November 2022.
- "M16 – WAC-47 for Ukrainian army from UkrOboronProm" (Press release). UkrOboronProm. 10 January 2017. Archived from the original on 18 January 2017. Retrieved 10 January 2017.
- Maitem, Jeoffrey (2 December 2020). "Gov't troops recover high-powered guns in Maguindanao clash". INQUIRER.net. p. 1. Archived from the original on 20 June 2023. Retrieved 20 June 2023.
- "Sauvetage au combat de niveau 1 [SC1] à l'île Maurice" (in French). Forces Armées de la Zone Sud de l'Océan Indien. 12 December 2012. Archived from the original on 22 September 2013. Retrieved 24 October 2013.
- "A Weapon Displayed From North Korea Special Forces and their Submarine". MBC News. 25 September 1996. Archived from the original on 20 October 2018. Retrieved 3 June 2019.
- "BuCor gets added firearms on one-year deal from PNP". MB.com.ph. 6 May 2021. Archived from the original on 26 May 2024. Retrieved 26 May 2024.
- McNab, Chris (2003). 20th Century Military Uniforms (pdf) (2nd ed.). Rochester, UK: Grange Books. p. 174. ISBN 978-1-84013-476-6. OCLC 216909562. Retrieved 9 July 2020.
- McNab, Chris; Shumate, Johnny & Gilliland, Alan (2021). The M4 Carbine. London, UK: Bloomsbury Publishing Plc. ISBN 978-1-4728-4225-1. OCLC 1226585278. Archived from the original on 6 February 2024. Retrieved 6 February 2024.
- McNab, Chris (2002). The SAS Training Manual. St. Paul, MN: MBI Publishing Company LLC. pp. 108–109. ISBN 978-0-7603-1301-5. OCLC 49522568. Archived from the original on 12 February 2024. Retrieved 25 March 2021.
- "Mecar Rifle Grenades". Mecar.be. 28 August 2006. Archived from the original on 18 March 2014. Retrieved 13 July 2014.
- "Mantan Kombatan GAM Serahkan 8 Senjata ke TNI". medcom.id (in Indonesian). 4 January 2019. Archived from the original on 20 June 2023. Retrieved 22 May 2021.
- Meehan, William J., II (11 February 1985). Operator's Manual For M16, M16A1 (pdf) (Change 2 ed.). Washington, DC: U.S. Army. p. 32. TM 9-1005-249-10. Retrieved 18 April 2015.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Mehta, Aaron (19 April 2017). "State OKs Humvees, howitzers for Iraqi peshmerga in ISIS fight". Defense News. p. 1. Retrieved 24 February 2024.
- "PKK'lı terörist, ABD yapımı silah ile yakalandı". MeydanNet.com (in Turkish). 7 August 2021. Archived from the original on 7 August 2021. Retrieved 7 August 2021.
- "Colt M16A2 Assault Rifle". Military Factory. 6 October 2014. Archived from the original on 12 November 2014. Retrieved 23 November 2014.
{{cite web}}
: CS1 maint: unfit URL (link) - Miller, David (2001). The Illustrated Directory of 20th Century Guns. Illustrated Directories. London, UK: Salamander Books Ltd. p. 480. ISBN 978-1-84065-245-1. OCLC 59522369. Retrieved 15 May 2011.
- Miller, David (2004). The Illustrated Directory of Special Forces (pdf). Illustrated Directories. London, UK: Salamander Books Ltd. pp. 280–281. ISBN 978-0-86288-697-4. OCLC 1193949127. Retrieved 6 June 2013.
- "Army destroys firearms captured [from] NPA rebs in NorthMin". Minda News. 23 August 2018. Archived from the original on 22 June 2023. Retrieved 20 November 2020.
- "Ministarstvo odbrane: Izmjenom propisa vojnici će moći ostati u OSBiH i nakon 35. godine". zeljeznopolje.com. 20 April 2019. Archived from the original on 28 April 2019. Retrieved 28 April 2019.
- "M16 723 M203". defense.gouv.fr. Ministère des Armées. 13 July 2016. Archived from the original on 30 January 2019. Retrieved 30 January 2019.
- Montes, Julio A. (1 January 1970). "Peruvian Small Arms: Gunning for the Shining Path – Small Arms Defense Journal". Small Arms Defense Journal. p. 1. Archived from the original on 26 October 2022. Retrieved 24 February 2024.
- Moorcraft, Paul L.; McLaughlin, Peter (April 2008) [1982]. The Rhodesian War: A Military History. Barnsley: Pen and Sword Books. p. 92. ISBN 978-1-84415-694-8. OCLC 191244168.
- Moreno, Juan (23 September 2019). "FARC Preparing for Renewed Fighting Deep in Colombian Jungle". Der Spiegel. p. 1. Archived from the original on 20 June 2023.
- Morgan, Earl J., ed. (1967). "Hearings before the Special Subcommittee on the M-16 Rifle Program of the Committee on Armed Services, House of Representatives, Ninetieth Congress, ..." HathiTrust. p. 4545. Archived from the original on 28 April 2019. Retrieved 18 April 2015.
- National Rifle Association of America (2 October 2018). "The AR-10 Story". American Rifleman. Archived from the original on 3 August 2020. Retrieved 2 October 2018.
- "National Guard Rifleman" (Photo). Archived from the original on 16 December 2018. Retrieved 14 December 2018.
- NATO Standardization Office (October 2020). NATO Standard AEP-97 Multi-Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition (PDF). Allied Engineering Publication (A ed.). Brussels, BE: [NATO]. pp. 100–125. Archived (PDF) from the original on 25 May 2023. Retrieved 25 May 2023.
- "NSN 1005-01-591-5825". 2012. Archived from the original on 22 September 2013. Retrieved 6 June 2013.
- "Navy.mil – View Image". Navy.mil. 29 December 2017. Archived from the original on 29 December 2017.
- "ISIS Shows Off Its American-Made M16 Rifles". NBC News. 1 September 2015. Archived from the original on 21 June 2023. Retrieved 21 August 2023.
- "The Ultimate Guide to the AR15 Iron Sights Ver 1.1". The New Rifleman. 16 May 2016. Archived from the original on 4 February 2022. Retrieved 4 February 2022.
- Newick, Glenn (1989). The Ultimate in Rifle Accuracy. South Hackensack, NJ: Stoeger Publishing Company. pp. 26–27. ISBN 978-0-88317-159-2. OCLC 1005502822.
- "O DESTACAMENTO DE ACÇÕES ESPECIAIS". Operacional (in Portuguese). 3 January 2015. Archived from the original on 12 April 2023. Retrieved 24 February 2024.
- Osborne, Arthur D. & Smith, Seward (February 1986). "ARI Research Note 86-19, ANALYSIS OF M16A2 RIFLE CHARACTERISTICS AND RECOMMENDED IMPROVEMENTS" (PDF). Mellonics Systems Development Division, Litton Systems, Inc. Fort Benning, GA: ARI Field Unit, Training Research Laboratory, United States Army – Research Institute for the Behavioral and Social Sciences. Archived from the original (PDF) on 29 March 2017.
- "An Attempt To Explain Japanese War Crimes". Pacificwar.org.au. Archived from the original on 7 July 2012. Retrieved 23 August 2012.
- Parks, W. Hays (2010). "International Legal Initiatives to Restrict Military Small Arms Ammunition" (PDF). Defense Technical Information Center (DTIC). International Committee of the Red Cross (ICRC). pp. 1–18. Archived from the original (PDF) on 29 November 2011.
- "Patent US2951424 - Gas operated bolt and carrier system". Google Patents. 14 August 1956. Archived from the original on 16 April 2021. Retrieved 11 April 2013.
- PEO Soldier (14 December 2009). "Army's Improved Magazine Increases Weapons Reliability". US Army. Archived from the original on 24 February 2013. Retrieved 24 December 2011.
- PEO Soldier (10 January 2010). "Improved magazine increases weapons reliability". US Army. Archived from the original on 22 September 2013. Retrieved 24 December 2011.
- PEO Soldier (2011). "M16A2/A4 rifle". US Army. Archived from the original on 14 January 2012. Retrieved 29 July 2015.
- "Soldiers Recover NPA weapons, nab suspected rebel in NegOcc". Philippine News Agency. 20 September 2020. Archived from the original on 20 June 2023. Retrieved 20 November 2020.
- "Army Begins Shipping Improved 5.56mm Cartridge". Picatinny Arsenal. 24 June 2010. Archived from the original on 1 June 2013.
- Pikula, Sam (1998). The ArmaLite AR-10 Rifle: The Saga of the First Modern Combat Rifle (kindle) (3rd (2016) ed.). Tucson, AZ: Regnum Fund. p. 15. ISBN 9789986494386. Archived from the original on 15 December 2022. Retrieved 23 May 2017.
- Prokosch, Eric (31 August 1995). "The Swiss draft Protocol on Small-Calibre Weapon Systems". Icrc.org. International Review of the Red Cross. p. 1. Archived from the original on 7 July 2015. Retrieved 20 November 2015.
- "Timeline: Weapons". The Queen's Own Rifles of Canada Regimental Museum and Archive. 29 July 2012. Archived from the original on 9 March 2024. Retrieved 5 June 2024.
- "Early Colt 3× Scope". Retro Black Rifle. 23 September 2020. Archived from the original on 17 December 2020. Retrieved 28 March 2021.
- "Late Colt 3X Scope". Retro Black Rifle. 23 September 2020. Archived from the original on 23 September 2021. Retrieved 28 March 2021.
- "Delft 3x25 Scope". Retro Black Rifle. 23 September 2020. Archived from the original on 23 September 2021. Retrieved 28 March 2021.
- "M16A1 Birdcage Flash Hiders". Retro Rifles. 14 December 2020. Archived from the original on 3 March 2022. Retrieved 17 February 2022.
- Reyeg, Fernando M.; Marsh, Ned B. (December 2011). The Filipino Way of War: Irregular Warfare through the Centuries (Master Thesis). Naval Postgraduate School. p. 114. hdl:10945/10681.
- Ripley, Tim (4 March 2016). "UK Royal Marine unit ditches the SA80 for Colt C8". IHS Jane's Defence Weekly. London, UK. p. 1. Archived from the original on 17 March 2016. Retrieved 13 June 2016.
- "RHKR Equipment - Weapons". www.rhkr.org. The Royal Hong Kong Regiment (The Volunteers) Association. Archived from the original on 24 June 2021. Retrieved 16 June 2021.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - Robinette, Rob (30 June 2017). "M16 4-Way Selector Install". Robrobinette.com. Archived from the original on 30 June 2017. Retrieved 20 November 2015.
- Rose, Alexander (2008). American Rifle: A Biography. New York, NY: Bantam Dell. pp. 1–495. ISBN 978-0-553-80517-8. OCLC 191922709. Archived from the original on 8 February 2024. Retrieved 8 February 2024.
- Rosenthal, Jack, ed. (3 October 1988). "Army Drops Colt as M16 Rifle Maker" (html). The New York Times. 138 (47647). New York: 32. ISSN 0362-4331. OCLC 1645522. Archived from the original on 9 August 2019. Retrieved 25 April 2019.
- Rottman, Gordon L. (20 December 2011). The M16. Weapon 14. Osprey Publishing. ISBN 978-1-84908-691-2.
- Russell, Sara M. (December 2006). "Soldier Perspectives on Small Arms in Combat" (PDF). CNA Corporation. pp. 1–50. Archived from the original (PDF) on 31 August 2015. Retrieved 13 July 2014.
- "S-5.56 rifle technical specifics table". Archived from the original on 30 June 2017. Retrieved 7 October 2007.
- "AR 15 (M16/M4)". SALW Guide. Archived from the original on 12 May 2021. Retrieved 19 February 2022.
- Sanborn, James K. (16 February 2015). "Deadlier rifles and ammo may be on the way". Marine Corps Times: 4. Archived from the original on 19 February 2024. Retrieved 19 February 2024.
- Sanborn, James K. (17 September 2015). "Marines unveil plan to modernize their small arms arsenal". Marine Corps Times: 7. Archived from the original on 5 January 2016. Retrieved 18 September 2015.
- 日本の特殊部隊 (in Japanese). Archived from the original on 4 November 2013.
- "The Current Readiness of the U.S. forces: Hearing before the Subcommittee on Readiness and Management Support of the Committee on Armed Services, United States Senate, 111th Congress, Second Session, April 14, 2010" (PDF). 14 April 2010. Archived (PDF) from the original on 10 March 2017. Retrieved 10 March 2017.
- Schehl, Matthew L. (27 July 2015). "Marine brass endorses infantry plan to ditch M16 for M4". Military Times. Vienna, VA. p. 3. Archived from the original on 30 July 2015.
- Schehl, Matthew L. (26 October 2015). "Commandant approves M4 as standard weapon for Marine infantry". Marine Corps Times. Vol. 17, no. 22. Vienna, VA. p. 19.
- Schehl, Matthew L. (1 November 2015). "Marine grunts react to switch from the M16 to the M4". Marine Corps Times. Vol. 17, no. 23. Vienna, VA. p. 5. Archived from the original on 25 April 2016. Retrieved 2 November 2015.
- Schreier, Philip (September 2001). "Cut down in its Youth, Arguably Americas Best Service Rifle, the M14 Never Had the Chance to Prove Itself" (PDF). NRA Museum. pp. 24–29, 46. Archived from the original (PDF) on 4 December 2013. Retrieved 3 June 2019.
- Schroeder, Matt (2013). "Captured and Counted: Illicit Weapons in Mexico and the Philippines". Small Arms Survey 2013: Everyday Dangers. Cambridge University Press. p. 303. ISBN 978-1-107-04196-7. Archived from the original (PDF) on 21 March 2019. Retrieved 5 June 2019.
- Sharma, Sushil (6 January 2003). "Nepal takes delivery of US rifles". BBC News. p. 1. Archived from the original on 22 September 2013. Retrieved 12 May 2010.
- Sicard, Jacques (November 1982). "Les armes de Kolwezi". La Gazette des armes (in French). No. 111. pp. 25–30. Archived from the original on 19 October 2018. Retrieved 18 October 2018.
- Simpson, Layne (4 January 2011). "Handloading The .223 Remington for the AR-15". Shootingtimes.com. p. 1. Archived from the original on 3 December 2013. Retrieved 13 July 2014.
- Slepyan, L.I.; Ayzenberg-Stepanenko, M.V. (1998). "Penetration of Metal-Fabrics Composites by Small Projectiles" (PDF). Personal Armour Systems. British Crown Copyright/MOD The Institute for Industrial Mathematics. pp. 1–10. Archived from the original (PDF) on 7 November 2015.
- Slowik, Max (6 September 2012). "New M855A1 Enhanced Performance Round Smashing Expectations". p. 1. Archived from the original on 3 December 2013.
- "Mexican Drug War Fighters". Small Arms Defense Journal. 16 October 2021. Archived from the original on 6 March 2022. Retrieved 7 February 2020.
- "Armed Violence in Burundi: Conflict and Post-Conflict Bujumbura" (PDF). Small Arms Survey 2007: Guns and the City. Cambridge University Press. 28 August 2007. p. 204. ISBN 978-0-521-88039-8. Archived from the original on 1 December 2021. Retrieved 29 August 2018.
- "The Central African Republic: A Case Study of Small Arms and Conflict" (PDF). Small Arms Survey 2007: Guns and the City. Cambridge University Press. 28 August 2007. p. 318. ISBN 978-0-19-928085-8. Archived from the original on 1 December 2021. Retrieved 29 August 2018.
- "Enemy Within: Ammunition Diversion in Uganda and Brazil" (PDF). Small Arms Survey 2007: Guns and the City. Cambridge University Press. 28 August 2007. p. 24. ISBN 978-0-521-88039-8. Archived from the original on 1 December 2021. Retrieved 29 August 2018.
- "Legacies of War in the Company of Peace: Firearms in Nepal" (PDF). Small Arms Survey 2013. Cambridge University Press. May 2013. pp. 5–7. ISBN 978-0-521-88039-8. Retrieved 29 August 2018.[permanent dead link]
- "Waning Cohesion: The Rise and Fall of the FDLR–FOCA" (PDF). Small Arms Survey 2015: Weapons and the World (PDF). Cambridge University Press. 2015. p. 201. Archived from the original (PDF) on 3 August 2020. Retrieved 29 August 2018.
- "First Look – New US Army 30 Round Enhanced Performance Magazine for M4A1". Soldier Systems Daily. 8 August 2016. Archived from the original on 7 September 2016. Retrieved 31 August 2016.
- South, Todd (20 April 2022). "Army chooses Sig Sauer to build its Next Generation Squad Weapon". Army Times. p. 1. Archived from the original on 17 March 2023. Retrieved 6 May 2022.
- Southby-Tailyour, Ewen (2003). Jane's Special Forces Recognition Guide (pdf). Jane's Recognition Guides. London, New York: HarperCollins. p. 446. ISBN 978-0-00-718329-6. OCLC 60793771. Retrieved 9 December 2020.
- "SAS Weapons". Special Operations.Com. London, UK. 2000. Archived from the original on 12 July 2008. Retrieved 17 February 2014.
- Stevens, Robert B.; Ezell, Edward Clinton (1992). The Black Rifle: M16 Retrospective. Modern U.S. Military Small Arms Series (2nd ed.). Toronto, ON: Collector Grade. p. 343. ISBN 978-0-88935-115-8. OCLC 30617792. Archived from the original on 17 February 2024. Retrieved 17 February 2012.
- Svensk, Henrik (6 March 2016). "M16 M16A2 Kalashnikov AK-47 – Utländska Vapensatsen" (in Swedish). SoldF.com. p. 1. Archived from the original on 10 April 2016. Retrieved 13 July 2014.
- Sweeney, Patrick (2007). The Gun Digest Book of the AR-15. Vol. II. Iola, WI: Krause Publications. pp. 1–288. ISBN 978-0-89689-474-7. Retrieved 11 February 2012.
- Sweeney, Patrick & Ferguson, Tom (2004). Modern Law Enforcement Weapons & Tactics (3rd ed.). Iola, WI: Krause Publications. pp. 1–260. ISBN 978-1-4402-2684-7. LCCN 2004105226. OCLC 775375077. Retrieved 6 June 2013.
- Taylor, Chuck (13 June 2009). "In Praise of the M16 Rifle". Tactical Life Gun Magazine: Gun News and Gun Reviews. Archived from the original on 1 December 2020. Retrieved 3 April 2012.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - "Siirt'te PKK'lı Teröristlere Ait Silah ve Mühimmat Ele Geçirildi". T.C. İçişleri Bakanlığı (in Turkish). 7 August 2021. Archived from the original on 22 June 2023. Retrieved 22 June 2023.
- "Military Industry Corporation". 16 November 2016. Archived from the original on 10 January 2017. Retrieved 17 November 2016.
- Thompson, Leroy (2011). The M1 Carbine. Weapon. Oxford, UK: Osprey (Bloomsbury Publishing). p. 35. ISBN 978-1-84908-907-4. OCLC 794243376. Archived from the original on 17 September 2023. Retrieved 8 February 2024.
- "Trijicon® History". Trijicon®. 23 January 2011. Archived from the original on 9 May 2021. Retrieved 9 February 2012.
- "Guerrilha e Contra-Guerrilha No Araguaia". Tropas e Armas (in Portuguese). 19 June 2021. Archived from the original on 22 February 2024. Retrieved 22 February 2024.
- "Assistance to Liberia in Marking Small Arms". United Nations Office for Disarmament Affairs. United Nations. 25 May 2015. Archived from the original on 22 April 2022. Retrieved 10 June 2022.
- Urdang, Laurence (1968). The Random House dictionary of the English language (pdf). New York, NY: Random House. p. 801. LCCN 68019699. OCLC 1151073952. Retrieved 25 March 2023.
- Valpolini, Paolo (February 2012). "Special Ops & Soldier Small Arms, Sights & Accessories" (PDF). Assault Rifles. Compendium Special Operations by Armada. Archived from the original (PDF) on 3 December 2013. Retrieved 27 July 2013.
- Venola, Richard (December 2004). "Iraq: Lessons From The Sandbox". Combat Arms. 1 (1). Guns & Ammo: 22–30. ISSN 0810-8838.
- Venola, Richard (March 2005). "What a Long Strange Trip It's Been". Book of the AR-15. 1 (2). Guns & Ammo: 6–18.
- "Archived copy". Archived from the original on 3 August 2020. Retrieved 31 May 2020.
{{cite web}}
: CS1 maint: archived copy as title (link) - Walker, Robert E. (2012). Cartridges and firearm identification. Boca Raton, FL: Taylor & Francis. p. 295. ISBN 978-1-4665-0207-9. OCLC 823230352.
- Walter, John (2006). Rifles of the World. Iola, WI: Krause Publications. pp. 320–321. ISBN 978-0-89689-241-5. LCCN 98194245. OCLC 67543348. Retrieved 25 March 2023.
- Watters, Daniel (2000). "The 5.56 X 45mm Timeline: A Chronology of Development". The Gun Zone. Archived from the original on 16 March 2015.
- Watters, Daniel E. (24 November 2004). "The Great Propellant Controversy". The Gun Zone. Archived from the original on 22 July 2013. Retrieved 29 June 2013.
- "Small Arms–Individual Weapons" (PDF). Weapon Systems 2011. 3 November 2010. Archived (PDF) from the original on 9 February 2011. Retrieved 8 November 2010.
- Weaver, Jonathan M., Jr. (May 1990). "System Error Budgets, Target Distributions and Hitting Performance Estimates For General-Purpose Rifles and Sniper Rifles of 7.62 X 51 MM and Larger Calibers" (PDF). Defense Technical Information Center. U. S. Army Material Systems Analysis Activity. p. 87. Archived (PDF) from the original on 26 February 2024. Retrieved 12 February 2024.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - Wieland, Terry (2011). Gun Digest Book of Classic American Combat Rifles. Iola, WI: Krause Publications. pp. 189–207. ISBN 978-1-4402-3015-8. OCLC 785405268. Retrieved 15 February 2024.
- Williams, Anthony G. (April 2014). "Assault Rifles And Their Ammunition: History and Prospects". Quarry.nildram.co.uk. Archived from the original on 2 June 2014. Retrieved 23 November 2021.
- Wille, Christina (5 May 2011). "How Many Weapons Are There in Cambodia?" (PDF). Small Arms Survey. p. 18. Archived from the original (Working Paper) on 4 July 2010. Retrieved 27 September 2011.
- "22 Long Rifle, 40 Grain, Super-X". Winchester Ammunition. 2012. Archived from the original on 18 September 2020. Retrieved 20 November 2015.
- "Explainer: What is Badri 313 unit? Taliban's so-called 'special force'". WION. 31 August 2021. Archived from the original on 23 October 2022.
- Woods, Jeffrey K. (2010). "The Evolution of the M855A1 5.56mm Enhanced Performance Round, 1960–2010". Picatinny Arsenal. ARMY AL&T. pp. 32–35. Archived from the original on 12 February 2024. Retrieved 12 February 2024.
- "Hamas Fighting With Weapons From Israel (Investigation)". 6 January 2009. Archived from the original on 20 March 2018. Retrieved 20 March 2018.
- Yates, Lawrence A. (July 1988). Power Pack: U.S. Intervention in the Dominican Republic, 1965-1966 (PDF). Leavenworth Papers, Number 15. United States Army Command and General Staff College. p. 123. Archived (PDF) from the original on 31 May 2023. Retrieved 20 September 2022.
- How 3-round burst works. 23 September 2014. Archived from the original on 30 May 2023. Retrieved 30 May 2023 – via YouTube.
{{cite AV media}}
: CS1 maint: bot: original URL status unknown (link) - "Equipment of North Korean Special Forces and Espionage". Yu Yong-won's Military World, Chosun Ilbo. 16 April 2013. Archived from the original on 24 May 2015. Retrieved 3 June 2019.
- "浴火重生——对越自卫反击战对我国轻武器发展的影响_参考网". 过期杂志阅读平台_参考网 (in Chinese). 23 September 2014. Archived from the original on 5 June 2023. Retrieved 11 November 2022.
Further reading
- Dartford, Mark (1985). Modern Warfare (pdf). London, UK: Marshall Cavendish. pp. 1–256. ISBN 978-0-86307-325-0. OCLC 1150869321. Retrieved 25 March 2023.
- Afonso, Aniceto; Gomes, Carlos de Matos (2000). Guerra Colonial (in Portuguese). Lisboa, PT: Ed. Notícias. p. 635. ISBN 978-972-46-1192-1. OCLC 47782618. Archived from the original on 4 December 2023. Retrieved 25 February 2024.
- Ezell, Edward Clinton (1984). The Great Rifle Controversy: Search for the Ultimate Infantry Weapon from World War II Through Vietnam and Beyond. Harrisburg, Pennsylvania: Halsted Press. ISBN 978-0-8117-0709-1.
- Hughes, David R. (1990). The History and Development of the M16 Rifle and its Cartridge. Oceanside, California: Armory Publications. ISBN 978-0-9626096-0-2.
- McNaugher, Tom L. (6 May 1969). "Marksmanship, McNamara, and the M16 Rifle: Organizations, Analysis, and Weapons Acquisition". RAND Corporation. Archived from the original on 25 February 2024. Retrieved 25 February 2024.
- M16 Rifle Review Panel (1 June 1968). Report of the M16 Rifle Review Panel (PDF) (Report). Chief of Staff U.S. Army. ADA953110. Archived from the original on 1 August 2013. Retrieved 17 March 2012.
External links
[edit]- Dept of Army Field Manual FM 23-9 Archived 7 November 2022 at the Wayback Machine
- Colt's Manufacturing: The M16A4 Rifle Archived 1 May 2022 at the Wayback Machine
- FN M16A4 website Archived 3 December 2023 at the Wayback Machine
- PEO Soldier M16 fact sheet
- Combat Training with the M16 Manual
- The short film "The Armalite AR-10" is available for free viewing and download at the Internet Archive.
- "Army Technical Manual (for M16 rifle) – TM9-1005-249-23P" at the Internet Archive
- "DA Pam 750-30 1969 US Army comic book for maintenance of the M16A1 rifle" at the Internet Archive, artwork by Will Eisner.
- "Operator's Manual for Rifle, 5.56 mm, M16; Rifle 5.56 mm, M16A1" at the Internet Archive
- The short film "Rifle 5.56mm, XM16E1, Operation and Cycle of Functioning TF9-3663 (1966)" is available for free viewing and download at the Internet Archive.
- The short film "Rifle, M16A1 – Part II – Field Expedients (1 July 1968)" is available for free viewing and download at the Internet Archive.